An Investigation into the Security
and Privacy of Blood Pressure

Monitors

Wei Tat Lee

Master of Science
Computer Science
School of Informatics
University of Edinburgh
2019

Abstract

In this paper, we show security vulnerabilities found commonly in connected health-
care devices. The lack of security practices in the production of these devices is a major
concern for these devices before they become widespread in the healthcare sector. This
paper illustrates that these security issues are well-known and should be prevented by
the manufacturers, which is not the case in the majority of instances examined. This
is important because Internet of Things (IoT) devices are increasingly used to monitor
healthcare, and we see that security issues could become a major roadblock for these
devices to be relied on. In this project, we build a testbed to apply penetration test-
ing on the Activ8rLives Blood Pressure Monitor. We focus on analysing the security
vulnerabilities that exist on the network communication of the system. We show that
sensitive information is retrieved using MITM proxy. Besides, we also show that the
application uses a non-expired token to authenticate users, which allows client replay
attacks indefinitely. Denial of service attacks can also be made by using any device
with Bluetooth Low Energy (BLE) capabilities to hog the connection with the moni-
tor. This is due to the lack of authentication for the BLE communication. Next, we
show that the smartphone application is not obfuscated. Lastly, we programmed a
BLE-embedded device to spoof false measurements to the smartphone. We show that
BLE embedded device can spoof 19 out of 20 measurements made by the user. We
conclude that the blood pressure monitor itself provides the ease of connectivity, but
does not employ the common security practices. We also provide a few suggestions to
mitigate the exploits that we found in this paper. A comparative security study could

be applied to different blood pressure monitor from manufacturers as future work.

Acknowledgements

I would first like to thank my project supervisor Dr. Paul Patras of the School of
Informatics. I would also like to express my very profound gratitude to my friends
for proof reading my thesis. And lastly I would like thank my family for the unfailing
support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have
been possible without them.

Thank you.

Table of Contents

1 Introduction

2 Background

2.1
2.2
2.3
24

Related Work
Bluetooth Low Energy
Hypertext Transfer Protocol / Secure

Information Assurance

3 Methodology

3.1

3.2

33

34
3.5

Activ8rlives Blood Pressure Monitor

3.1.1 Communications Model
Adversarial Model L oo
3.2.1 Attacker Capabilities
3.2.2 Threat Scenarios
Testbed
3.3.1 Setup Environment
332 MITM Setup
BLE Debugging Tools
Application Decompiling L L.

4 Security Analysis

4.1
4.2
4.3

4.4

Transparent Proxying
PacketInjection
Activ8Live Application BLE Protocol
43.1 HCILogs it
4.3.2 Application Decompiling
433 BLEProtocol
Custom BLE Device

[©) WY, T, BN SN SN

R

10
10
11
12
13
13
14
15

4.5 Denialof Service e

5 Discussion

5.1 Attack Mitigation L

5.2 Future Work
6 Conclusions

Bibliography

32
32
34

36

37

Chapter 1
Introduction

Statistics have shown the potential of IoT devices in the health care ecosystem through
its increasing use in daily self-cared monitoring devices (DigitalHealth, 2018). These
devices can be monitored remotely by health practitioners in real-time and are becom-
ing more common in replacing the need for body checkups in public health facilities
(IoT_Agenda, 2018; ReadWrite, 2018). For example, as the proportion of the world’s
population and risk of getting high blood pressure increases over time and age (WPP,
2017), digital blood pressure monitoring devices can assist health practitioners provide
“early’ preventive actions for patients with the risk of heart attacks. Besides, digital
blood pressure monitoring devices are now commonly used by elderly people.

Under those circumstances, the trust in these connected medical devices is needed
inevitably (TheGuardian, 2019). However, having a system to be impenetrable has
always been a big challenge in this modern society.

Due to the nature of strict deadlines, manufacturers often focus on releasing new
features to compete in the market (Matt Toomey, 2018). This results in devices with
known security flaws being released to the consumers (Tuptuk & Hailes, 2018). Nev-
ertheless, user often rely on vendors for the protection of their data (Accenture, 2015),
which in most cases are not enforced. Inevitably, the security aspects of the production
are overlooked or neglected by the manufacturers.

With that in mind, there are an increasing number of cyber-attacks on these de-
vices (Service, 2019) as open-source hardware platforms and drivers are becoming
more prevalent (Scott Amyx, 2018) allowing individuals with minimal networking
and programming skills to hack such commodity web-connected devices. Cyber at-
tackers would try to exploit different kinds of vulnerabilities from unsecured devices

to achieve malicious goals. For instances, an attacker could gain monetary benefits by

Chapter 1. Introduction 2

removing service availability from competitors.

One example of these attacks is the Mirai Botnet Attack (Symantec, 2016). It
utilised unsecured IoT devices that were mainly configured to default factory settings
to employ a Distributed Denial of Service (DDoS). Also, the user themselves could be
applying the exploits themselves to gain monetary benefits. For example, NHS Scot-
land provides health services for hypertension patients (Scotland, 2019); this further
motivates users with malicious intents to spoof fake blood pressure readings to gain
these services.

Consequently, this led us to ask if we should trust these devices and constitutes a
major roadbloack towards deploying loT devices in critical public services, as long as
their security remains under jeopardy. Therefore, we are going to identify the most
common security vulnerabilities present in the particular case of blood pressure moni-
toring devices within this project.

The rest of this paper is organised as follows. Chapter 2 presents related works
and also provides detail information on background technologies. We then present
the methodologies for our security analysis in Chapter 3 which includes building a
testbed and using various tools to assists in our analysis. Next, we present our results in
Chapter 4 on any security vulnerabilities on the Activ8lives Blood Pressure monitor.
We then suggest some design recommendations to mitigate the attack that we found in

Chapter 5. Finally, we summarise and make a conclusion of the project in Chapter 6.

Contributions and Findings

In this paper, we showed that the Activ8lives Blood pressure monitor is insecure. We

can exploit the device using multiple attack vectors which are shown as follows:

* A testbed is built to perform comprehensive security testing on the devices.

* MITM proxy is deployed to sniff unencrypted data transmitted to the cloud

Server.

* False data is injected into the cloud server using replay attacks.

The BLE communication protocol is reverse engineered.
* The application is decompiled and the source code is retrieved.

* A DDoS attack is applied to the smartphone application.

Chapter 1. Introduction 3

* An embedded device is programmed to spoof fake measurements which can be

automated.

Responsible disclosure:

Prior to submitting this thesis, we have disclosed all of the identified security vulnera-

bilities to Activ8rLives.

Chapter 2

Background

2.1 Related Work

With IoT devices forecast as being a focus on enterprise attacks (iscoop.eu, 2018),
heavy security analyses have been conducted on them. In particular, there is an exten-
sive research targeting Fitbit devices, which is leading the market for health-tracking
devices (Maher et al., 2017). Cyr et al. (2014) uncovered security weakness on the BLE
and network traffic of FitBit Flex which includes static MAC addressing and exposed
credentials during pairing. Furthermore, work has done by Fereidooni et al. (2017);
Classen et al. (2018), which looked into the protocol for data transmission across the
device, application and the cloud. In recent work, Orlosky et al. (2019) focused on the
security and privacy concerns used by third-party services.

To the best of our knowledge, no security analyses that specifically targets blood
pressure monitors devices has even been done. However, there have been more general
studies on the vulnerabilities of medical devices, including devices that are not con-
nected to the internet. In general, the recent work done by Yaqoob et al. (2019), con-
ducted a study on hundreds of state-of-the-art networked medical devices and showed
multiple vulnerabilities that exist in these devices.

All this research demonstrated how IoT devices, in general, contain security vul-
nerabilities that are common and attacks that are unique and highly specific. We look
into these common exploits and apply them to blood pressure monitoring devices. In
this paper, we focus on the communication protocol between the devices, the applica-

tion and cloud services.

Chapter 2. Background 5

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) or short for Bluetooth Smart, is a short-range radio wave
communication standard developed by Bluetooth SIG (SIG., 2019). BLE enabled de-
vices simplify data transmission between two devices. In particular, its usage has
shown to increase in the industry setting for loT devices (Jeon et al., 2018). This
is because BLE is designed to provide low power consumption. Most importantly,
this greatly benefits IoT embedded devices, which normally are not powered with an
AC/DC supply.

BLE uses the notation of profiles and services to define the functionality of the de-
vices. The generic access profile (GAP), defines the base profile for devices to discover
and connect. It also defines how the devices are paired with each other to have secured
end-to-end encryption.

The data transfer between the devices after a connection is established is defined
by the Generic Attribute Profile (GATT). Services are objects that contain multiple
characteristics. These are used to organise larger data into a smaller chunk of data. The
characteristic itself is the lowest level that contains a single data entity. Bluetooth SIG
had officially defined a list of profiles that encapsulates services and characteristics that
cover usual use cases. Figure: 2.1 shows the predefined service for heart rate monitor
devices.

GATT is built on top of the Attribute Protocol (ATT), which establishes how the
data is being transported and stored. It formats data into services and characteristics
which are encapsulated in a single GATT entity. Each of these objects is uniquely
identified with a unique handle and a pre-defined 16-bit or 128-bit Universally Unique
Identifiers (UUID).

2.3 Hypertext Transfer Protocol / Secure

HyperText Transfer Protocol Secure (HTTPS) is a secured communication protocol
(Google, 2019) extended from HTTP (Fielding et al., 1999). It is built on top of the
Transport Layer Security Protocol (TLS), which is a cryptographic layer that provides
a secure communication across HTTP connections. In other words, a server and client
that uses HTTP to communicate are encrypted end-to-end. This gives the assurance
that an attacker with malicious intent would not be able to eavesdrop on sensitive

information from the communication.

Chapter 2. Background 6

Heart Rate Service

Figure 2.1: The Heart Rate Service Profile defined by Bluetooth SIG. (Davidson, 2014)

However, this can be circumvented when an attacker is in between the server and
the client. The attacker tricks the client that they are the server and the server to be the
client. This is known as the Man in the Middle (MITM) attack. This brings out the
notion of digital certificates, which certify that the server itself is the rightful owner
of the server. However, this can only be signed by a trusted Certificate Authorities
(CA). Typically, client devices have a list of CA to be trusted, called root certificates.
Thus, a malicious party would not be able to eavesdrop on the communication unless

a self-signed certificate have been installed in the client’s device.

2.4 Information Assurance

In this section, we will analyse the security aspects of the system based on information
assurance.

Information assurance is defined as a set of processes or practices that ensure that
information is processed or managed properly. The processes include the assurance of
confidentiality, integrity, availability, authentication and non-repudiation. It is widely
used as a measure to protect and defend information systems. This also applies to IoT

systems, and below we explain how this concept applies to this project:

1. Confidentiality - Information that is stored, stayed secret unless it is intended

to be revealed. We want data to be secured such that it stays private from non-

Chapter 2. Background 7

authorised parties.

2. Integrity - Maintaining the consistency and trustworthiness of the information
over its lifecycle. We want to ensure that the blood pressure readings are trust-

worthy and not tampered with.

3. Availability - The service of making sure the offered functionality is provided
when needed. We want to make sure that the user can use the blood pressure

monitor when it is supposed to be available.

4. Authentication - The process of confirming and authenticating the user’s iden-
tity. We have to make sure that the cloud system does not allow an unauthenti-

cated user to upload readings on behalf of others.

5. Non-repudiation - The assurance that someone cannot deny the validity of any
action. We want to make sure that the proof of origin of any action or data is

protected.

Chapter 3
Methodology

In this chapter, we talk about the methods that we used to explore the vulnerabilities
that are available in the device. As we mentioned before, we will be targeting the
Activ8rLives Blood Pressure monitor in this report. We show in detail the system
architecture and the communication model of the device. We then outline different
attack scenarios that would apply to general blood pressure monitors. We then describe
the testbed configuration that we will be using and also various tools to reverse engineer

communication protocol.

3.1 Activ8rlives Blood Pressure Monitor

The Activ8rlives Blood Pressure Monitor is one of the most affordable models in the
market and it is commonly used by households to monitor daily blood pressure. User
can sync and upload measurements through smartphones. This allows the user to keep

track of the blood pressure readings periodically.

Blood Pressure Monitor Smart Phone Router Cloud Server

Internet

Figure 3.1: The communication model of Activ8rLives blood pressure monitor

Chapter 3. Methodology 9

I® 0 bR AN RrECY I N~ 3O E1406] BB E 3 @ E 1418
Menu Dashboard ? < Menu Charts ? < Menu Charts # ?
. 04-Aug-19 Simple SUMMARY CHARTS MEASURE SUMMARY CHARTS MEASURE
2 04 August 2019
@ Steps s’ ks ki S0
Heart \4 Systolic Blood Pressure # Edit Data
Rate (mmHg)
Steps
Progress Your Last 3 Blood Pressure Readings ‘
Weight 100 98mmHg
18 Jul 2019
o same time yestercay 29) O kg Sunday 04 August 2019 . 8 Ju
/55
oy 15y 2.0y 29y shug
P 2019 2010 201 200
Diastolic Blood Pressure # Edit Data
Blood Pressure Heart Rate Sunday 04 August 2019 (mmHg)
55 /59
Weight
Change

Wednesday 31 July 2019
/52

Figure 3.2: The application user interfaces.

3.1.1 Communications Model

The blood pressure monitor follows the usual IoT Paradigm. The device uses a smart-
phone as a gateway to upload blood pressure readings to the cloud. This is shown in
Figure 3.1. The smartphone app is used to propagate data to the cloud server. The
data is transmitted to the smartphone with BLE, and the app uploads data to the cloud
using RESTful API provided by the server.

The user could read and track the blood pressure using the application. The user
interface (UI) provides tracking different health information besides blood pressure
readings. This is shown in Figure 3.2. Other than that, the user could also use the web

interface dashboard to check the readings on a web browser.

Pairing

The user has to pair the device with the smartphone application before uploading blood
pressure readings to the cloud server. The pairing” process is shown in Figure 3.3.
The user has to switch the device into “pairing” mode before starting the pairing pro-
cess. After the ”pairing” process completes, the user does not need to re-pair the device

again.

Chapter 3. Methodology 10

ﬁgﬁw, 3O & 2144 Q*D» A AN R KA 3 O & 2146
<
Menu Blood Pressure Menu Blood Pressure ? Menu Blood Pressure ?
SUMMARY CHARTS MEASURE SUMMARY CHARTS MEASURE SUMMARY CHARTS MEASURE

Prepare your monitor Setting up your monitor Monitor is ready
Please switch your monitor off and on We need to identify your monitor. Press Your monitor has been setup and is ready
again, then press Next. and hold the pair button until the display to use. Press next to take a reading.
If you have a different kind of monitor, shows as below.

press Change.

User2/ CO

Press & Hold

NEXT CHANGE

Figure 3.3: The app user interface for pairing the device with the smart phone

Reading

Blood pressure readings are uploaded right after the measurements are taken. Old
measurements have to be added manually by the user. Measurements added manually
are marked differently compared to measurements uploaded by the device. This shows
that fake measurements added by the user could be spotted easily in the application.
Figure: 3.4 shows the reading process used by the application. The user has to trigger

the reading process from the application before taking the readings.

3.2 Adversarial Model

In this chapter, we apply some threat modelling to show different attacking scenarios.
We first describe the capabilities of the attacker to exploit the vulnerabilities of the de-
vice. Next, we discuss different scenarios that could benefit an attacker with nefarious

intentions.

3.2.1 Attacker Capabilities

We assume that the attacker has set up a MITM proxy. This allows the attacker to

transparently interfere and tamper with the communication packets.

Chapter 3. Methodology 11

SCDC» 3O @214 @0 > PO @214 | OB G » 3O @214 D@ C > 3 @ I & 21:50
< < <
Menu Blood Pressure ? Menu Blood Pressure ? Menu Blood Pressure ? < Menu Measure ?

SUMMARY CHARTS MEASURE SUMMARY CHARTS MEASURE SUMMARY CHARTS MEASURE SUMMARY MEASURE
Prepare your monitor Strap on your monitor Read your blood pressure - 31 July 2019
Please switch your monitor off and on Strap on the monitor as shown in the Press either of the reading buttons on the
again, then press Next. picture, then press next monitor
If you have a different kind of monitor, _ 1
press Change. Systolic

Blood
Pressure

Diastolic 52mmHg 1
Blood
Pressure

Heart 1

Rate

LIS+ =]
NEXT CHANGE NEXT

Figure 3.4: The app user interface for taking a measurements and sync to the cloud.

3.2.2 Threat Scenarios

1. Denial of Service : Attacker can potentially deny service by uploading a reading
to the server which results overwhelms the user with a huge quantity of inaccu-
rate information. This violates the integrity of data in the process of information

assurance.

* Communication Hijacking - Bluetooth communication without proper au-
thentication might result in denial of service. The attacker can exploit this

and pair with the device to hijack the communication.

 Fake Bluetooth Device - An attacker could deploy smart BLE devices that

could send fake measurements to the user’s mobile phone.

» False Malware Updates - Unsigned firmware updates could potentially al-
low the attacker to inject malware to either the device or the application.
This would stop the device from working or, in the worst case, brick the

device.

2. User Impersonation : User impersonation can cause harm to the user both phys-
ically and psychologically. The attacker could submit false blood pressure read-
ings which lead to wrong medical prescriptions. This might cause a user with

good health to think they have hypertension, at the same time would cause rep-

Chapter 3. Methodology 12

utation damage to the device manufacturer.

* Packet Injection - Communications that are not encrypted can be sniffed by
attackers. This allows the attackers to modify and replay the packets to the

server which could lead to false readings submitted to the server.

* False Authentication - Pairing without any authentication will allow the

attacker to pair the device without the user noticing.

3. Spying : Spying is the act of obtaining information without the knowledge of
the compromised user. The attack surface for spying can span through a wide
spectrum of attack surfaces but, in this paper, we focus on the network commu-

nication between the devices.

* Packet Sniffing Ongoing Communications - Data without proper encryption

would expose sensitive information to attackers.

* Black Mailing - The attacker could blackmail a user with sensitive health
data. For example, an actor has been blackmailed on disclosing HIV posi-

tive results to the public (Post, 2015).

3.3 Testbed

We deployed a general testbed to analyse or identify any security flaws in the targeted
device. The testbed was built such that we could repeat the analysis to multiple devices.
We assume that the medical device uses a smartphone as a gateway to propagate data
to the cloud server. We will be using a Moto G - 3rd with Android (ver 5.1.1) as our
mobile device. We also used a Linux based laptop running Ubuntu 18.04 LTS as the
OS to run and set up the testbed. In Section 3.3.1, we will discuss in detail testbed

setup.

Source Code 3.1: /etc/network/interfaces

auto ${AP interface}

iface ${AP interface} inet static
address 172.25.1.1
netmask 255.255.255.0
network 172.25.1.0

6

7

Chapter 3. Methodology 13

auto ${Native interface}

iface ${Native interface} inet dhcp

3.3.1 Setup Environment

The testbed environment is set up to allow transparent HTTP/S transmission between
the phone app and the server. In the testbed, we manually set up a custom WiFi Access
Point (AP) that our smartphone will be connecting to.

The hostapd service is used to configure the external Wifi Adapter (ALFA Network
AWUSO36NHA) as the custom Wifi AP. Meanwhile wpa_supplicant is used to configure
the native wireless adapter to connect to an actual WiFi network. Source Code 3.1
shows the interface configuration file. We can see that static IP address is configured
for the AP interface whereas dynamic IP address is configured for the native WiFi

interface.

Source Code 3.2: Port Forwarding Rules

iptables -A FORWARD -i ${AP interface} -o ${Native interface} -j ACCEPT

iptables -A FORWARD -i ${Native interface} -o ${AP interface} -m state
— —--state ESTABLISHED,RELATED -7j ACCEPT

iptables -t nat -A POSTROUTING -o ${AP interface} -3j MASQUERADE

Besides, we used isc-dhcp-server to dynamically allocate TP addresses to clients
that connect to the AP. At the same time, we used google DNS (8.8.8.8) with dnsmasq
to resolve DNS names. Finally, we enabled and appended some port forwarding rules
to forward the packets from the AP interface to the native interface, as shown in Source
Code 3.2.

3.3.2 MITM Setup

We setup a MITM proxy on the AP interface to intercept the communication between
the device and the cloud server. We simply redirect packets from port 80 (HTTP) and
443 (HTTPS) packets through port 8080 (MITM proxy) which is shown in Source
Code 3.3. The final configuration of the testbed is shown in Figure 3.5. Note that,

Chapter 3. Methodology 14

Router Cloud Server

A - ‘
D ———

Native Interface

Blood Pressure Monitor Smart Phone

Self-Signed |
Certificate

AP Interface MITM Proxy

Figure 3.5: The testbed structure to setup MITM proxy.

we installed a fake Certified Authority (CA) certificate on the Android smartphone to
allow us to look into HTTPS packets.

Source Code 3.3: MITM port redirect rules.

1 iptables -t nat -A PREROUTING -i ${AP interface} -p tcp --dport 80 -j
— REDIRECT --to-port 8080
2 iptables -t nat -A PREROUTING -i ${AP interface} -p tcp --dport 443 —j

< RERIRECT --to-port 8080

3.4 BLE Debugging Tools

We used various BLE debugging tools to reverse engineer the BLE protocol between
the device and the app. Using these tools we can understand and analyze any security
vulnerabilities available in the BLE protocol.

We used the Android app nRF Connect (Semiconductor., 2019) to understand the
BLE GATT characteristics and services that are used. It provides a friendly interface to
debug BLE GATT services and thus give more information on the BLE communication
used by the device.

Furthermore, we logged the BLE packets between the smartphone and the device.

Chapter 3. Methodology 15

Logging is enabled on Android smartphones through developer mode. The logs are
then analysed, using the open-source packet analyser, Wireshark (Orebaugh et al.,
2007).

3.5 Application Decompiling

To further reverse engineer the protocol, we decompiled the Android application using
various tools. We used APK Extractor, to extract the APK of the android app. We then
further decompile the APK into source code by using APKTool (apk, 2017), Dex2JAR
(pxb1988, 2018) and JDGui (java decompiler, 2019).

Chapter 4
Security Analysis

In this chapter, we talk about how we apply the exploits on the Activ8rLives Blood
Pressure monitor device. In particular, we logged sensitive information using MITM
proxy such as National Health Security (NSH) number. We showed that the data are
structured in clear JavaScript Object Notation (JSON) format. Moreover, we injected
false data into the cloud by using non-expiring tokens. Next, we reverse engineered
the BLE communication protocol between the device and the application. We then

programmed a BLE device to spoof fake data through the smartphone app.

4.1 Transparent Proxying

We can transparently sniff the communication between the Android application and the
server. With TLS/SSL stripped from the protocol, we can fully compromise HTTPS
calls to the vendor’s server. This shows that the vendor used a self-signed certificate to
secure communications.

This is a common vulnerability: by using MITM proxy, private information such
as email, password and National Insurance Number (NHS) are being transmitted unen-
crypted over the air in plain JSON. JSON is a lightweight data format widely used on
the web. The intercepted JSON is shown in Listing 4.1. This would allow the attacker

to use the user’s identity to gain monetary advantages.

Listing 4.1: The request body sent to the server in plain text JSON format on account

creation.

|

2

3

"user-type": "user",

"user-username": "testingl23@gmail.com",

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Chapter 4. Security Analysis

"user-password": "123456789Qwertyuiop",
"NHS": "xxxxxxxx",

"user—-first -name": "test",
"user-last-name": "ing",
"user-nickname": "test",
"user-dateofbirth": "2006-07-16T17:05:28.6542",
"user-gender": "M",

"user-weight -units": "kg",

"user-height -units": "cm",
"user-receive-marketing": "False",
"user-units": "metric",

"Fevl-target": 2.25,

"Pef-target": 283,

"Step-target": 10000,
"Activity-target": "60",

"Weight -target": 66,

"Stride-length": 60,

"Weight": 60,

"Height": 150

17

On account creation, the server generates a token and a UserID, both of which are

sent as a plain text response to the user application. This is shown in Listing 4.2. They

are also sent when the user is logging into the application as shown in Listing 4.3.

Listing 4.2: Profile Creation Response

"user_id": 63378,
"token": "ald9e309c2796ellb8aldb7eabed7850claa’’Zaee"

Listing 4.3: Login Response

"user_id": 63363,
"token": "06e40a343d9%9al183¢c92515bfc0fd5bb4d22£4e891",
"password_age": "2019-07-14T19:23:39.239131+00:00"

Chapter 4. Security Analysis 18

Key
Content-Type application/json; charset=utf-8
Authorization
Accept-Encodi

identity

273

Dalvik/2.1.0 (Linux; U; Android 5.1.1; MotoG3 Build/LPI23.72-66)
api.activ8rlives.com

Keep-Alive

Figure 4.1: HTTP Request Headers for posting measurements.

4.2 Packet Injection

Once a measurement reading is sent to the Android application through BLE, the app
then sends an HTTP POST request to the server. The header and body are shown in
Figure 4.1 and Listing 4.4 respectively. The server in return replies with a unique

event id as shown in Listing 4.5

Listing 4.4: Post Measurements

| §
2 "guid": "5ac68840-8a76-482d-9b0a-4db60323eafe",
3 "start_date": "2019-07-18T11:57:48.096448z2",
4 "end_date": "2019-07-18T11:57:48.096448z",
5 "source": "bloodpressure",
6 "data_types": |
7 "Systolic-Blood-Pressure",
8 "Diastolic-Blood-Pressure",
9 "Pulse"
10 1,
11 "data": [0, 0, 0],
12 "owner": "6636"
13 }
Listing 4.5: Post Measurements Response
N

Chapter 4. Security Analysis 19

2 "url": "/api/0.1/events/58601650/"

We used the MITM Proxy to intercept the communication between the app and the
vendor’s server. This is done while the user is taking a reading and syncing through the
mobile application. The proxy intercepted the response and changed it to a different
value by the attacker. The values are only tampered with in transit to the server and
hence, the user would not notice any changes in either the app or the blood pressure

monitor. However, we can see that the values are changed when using the web interface

as shown in Figure 4.2.

My Health Score (NEWS)
{based on readings taken today)
Good Evening Damien i
S101010 Ve g 6 View your o Doom Ommiig
NEWS chart
Heart Rate Sys BP
Activ8rlives Pulse Oximeter2 (Non-invasive
‘ pulse oximeter, also measures heart rate)
RRP £49.99 £39.99 Buy direct from Activarlives
Prices accurate as of 11/12/2017 16
Showing data for Wednesday 24th July 2019 (Today) Previous day Today Next day Choose day
? pashboard Help | Simple | Advanced | Expert
x
Data S -
ata summary kg
Steps Weight
Steps (Last 7 days) Add Data View Chart Add Data View Chart
No data recorded J— 1 8 8
keal . H
Weight Calories BMI
Add Data View Chart Add Data View Chart
12 days ago
48 kg Base gi:t(:tmic Fat PE_I_C:’HBQE Muscle Tf;cen[age
Activity Duration Distance 1,368
®
--h
-=km
GI'DI.IFI Messages == m Bone Mass Visceral Fat Body Water
--% - --%
¥ou have no group messages
Why not join the Activ8rlives A8 Group for help 0 i - -
. B
and support from other users? c
Click here to join Systolic Body Temperature
fdd Data Vigw Chart Add Data View Chart
Blood Pressure 0 i
- .-
°C
Diastolic
Room Temperature
Add Data View Chart
Add Data View Chart

Obpm ’l' -

Heart Rate Oxygen @
Add Data View Chart Add Data View Chart More

Figure 4.2: The Web Interface for Activ8rLive services with spoofed data being up-

loaded to the server.

Chapter 4. Security Analysis 20

We noticed that only the token and the UserID are used by the server to authenticate
the user. Most importantly, the authentication token itself does not expire. This allows

the attacker to apply replay attacks once the authentication token is compromised.

Source Code 4.1: get_reading.sh

curl -k \

-H '"Authorization:token '"${AUTHTOKEN}" \

-H 'Host:api.activ8rlives.com' \
"https://51.179.221.21/api/0.1/ events/?owner=""${USERID}"'&

— data_types=Diastolic-Blood-Pressure &order_ by=-start_date&count=1"

Source Code 4.2: post_reading.sh

curl -k \

-H 'Content-Type:application/json; charset=utf-8' \

-H "Authorization:token ${AUTHTOKEN}" \

-H 'Host:api.activ8rlives.com' \

-X POST 'https://51.179.221.21/api/0.1/events/"' \

——data-binary '[{"qguid":"5ac68840-8a76-482d-9b0a-4db60323eafe",
< "start_date":"2019-07-18T11:57:48.096448z2",
< "end_date":"2019-07-18T11:57:48.0964482", "source":"bloodpressure",
< "data_types":["Systolic-Blood-Pressure", "Diastolic-Blood-Pressure",

< "Pulse"],"data":[19.0,19.0,19.0], "owner""'":${USERID}}]"

This allows the attacker to remotely retrieve or submit false readings. The attacker
would only need to hijack the connection and retrieve the relevant authorization token
and UserID. This could be done using a command-line tool to make HTTP calls such
as cURL. The example of the script and response in JSON are shown in Source Code
4.1 and JSON 4.6 respectively. Note that we used the -k suffix in cURL because the

vendor does not use a CA-signed certificate.

Listing 4.6: JSON response to retrieve recent measurements reading using cURL.

{

"end_date": "2019-07-26T19:55:58.6068002",
"id": 59146118,
"guid": "192edcf9-fl17e-44d7-a832-7b56adbelcebt",

10

11

12

13

14

15

16

17

18

Chapter 4. Security Analysis 21

"user": 63342,

"related_to": null,

"data": [3, 2, 11,

"owner": 63342,

"data_ids": [38, 53, 53],

"data_types": ["Pulse","Diastolic-Blood-Pressure","

Systolic-Blood-Pressure"],
"modified": "2019-07-26T19:55:55.348649z2",
"replaces": null,
"url": "/api/0.1/events/59146118/",
"start_date": "2019-07-26T19:55:58.606800z",
"source": "bloodpressure",
"replaced_by": null,
"created": "2019-07-26T19:55:55.3486122"

4.3 Activ8Live Application BLE Protocol

To understand the BLE protocol between the device and the Android app, we used the
BLE debugger tool, Nordic Connect (Semiconductor., 2019). We can conenct with the
monitor without any authentication steps required. We discovered a proprietary ser-
vice with a 16-bit UUID of 0x7809 that consists of 5 different characteristics which
is shown in Table 4.1. We can see that readl, read2 and writel are setups with NO-
TIFY/INDICATE flag. This would allow the server (blood pressure monitor) to notify
the client (app) if there is a new value written to the characteristic.

Now, we can infer that the device mainly uses this propriety service to communi-
cate with the app. For us to understand the protocol, we inspect the BLE packets at a
high level using HCI logging. Also, we decompiled the app to look at the source code
for further clarification of the protocol.

Figure 4.3 shows the screenshot of the custom service. However, we were not able
to retrieve any other information other than the serial code and firmware model from

the General Access Service.

1

Chapter 4. Security Analysis 22

DL 3 ONE1002] D@ E 3 9 & B 19:02
Devices DISCONNECT § Devices DISCONNECT §
1808A0 1808A0
BONDED ADVERTISER [opon7c X BONDED ADVERTISER 1o.09.49.80:0A:7C
CONNECTED o CONNECTED .
NOT BONDED CLIENT SERVER g NOT BONDED CLIENT SERVER H
. Unknown Characteristic 3
Unknown Service UUID: 00008290-0000-1000-8000-00805f9b34fb
UUID: 00007809-0000-1000-8000-00805f9b34fb Properties: READ
PRIMARY SERVICE
o "w Unknown Characteristic w
Unknown Characteristic - UUID: 00008a92-0000-1000-8000-00805f9b34fb
UUID: 00008a91-0000-1000-8000-00805f9b34fb Properties: NOTIFY
Properties: INDICATE Descriptors:
Descriptors: Client Characteristic Configuration 3
Client Characteristic Configuration L UUID: 0x2902 -
UUID: 0x2902 -
o 4 Unknown Characteristic 1
Unknown Characteristic - UUID: 00008a81-0000-1000-8000-00805f9b34fb
UUID: 00008290-0000-1000-8000-00805f9b34fb Properties: WRITE
Properties: READ
o w Unknown Characteristic 4
Unknown Characteristic - UUID: 00008a82-0000-1000-8000-00805f9b34fb

UUID: 00008a92-0000-1000-8000-00805f9b34fb Properties: INDICATE
Properties: NOTIFY Descriptors:

Descriptors: Client Characteristic Configuration

Client Characteristic Configuration UUID: 0x2902

Figure 4.3: The custom service with characteristics advertised by the Activ8Live blood

pressure monitor.

4.3.1 HCI Logs

In this section, we look at the BLE packets to understand and reverse engineer the
communication protocol. The logs were logged and retrieved by enabling HCI logging
in developer mode. Figure 4.4 shows one of the characteristics being sent in Attribute
Transfer Protocol (ATT).

We used the WireShark tool to format the data in a more readable format. The
opcode with Ox1d, show that it is an indication value sent by the GATT server. It has
the handle, 0x000b to indicate that it is under the GATT service, 0x7809 which contains
GATT characteristic of 0x8a91. Next, the blood pressure readings are embedded in the
payload.

Source Code 4.3: Snippet of the MainActivity.java

public class MainActivity extends

md5da774518c0af898cl651afdal7£7148f.MainActivity

Chapter 4. Security Analysis 23

Type UUID NAME FLAG

Service 0x7809 Service READ

Characteristic 0x8A82 readl INDICATE
0x8A91 read2 INDICATE
0x8A90 read3 READ
0x8A92 writel NOTIFY
0x8A81 write2 WRITE

Table 4.1: The GATT proprietary service from the blood pressure monitor device as the
GATT server.

implements IGCUserPeer

public MainActivity ()
{
if (getClass () == com/activ8rlives/activ8rlivesd/
MainActivity)
TypeManager.Activate ("Activ8rlivesd4d.Droid.
MainActivity, Activ8rlives4.Droid", "",

this, new Object [0]);

private native void n_onCreate (Bundle bundle);

4.3.2 Application Decompiling

To further reverse engineer the communication protocol we decompiled the Android
application. ApkTool, Dex2Jar and JAD were used to retrieve the source code, which
is shown in Code 4.3. We noticed that the app was developed using the cross-platform
framework, Xamarin (Devopedia., 2018). We then used a .NET decompiler (dgrun-
wald., 2019) to decompile the assemblies contained in the APK file.

The source code itself is in plain text and it is not obfuscated. We were able to

Chapter 4. Security Analysis 24

» Frame 599: 29 bytes on wire (232 bits), 29 bytes captured (232 bits)
v Bluetooth

[Source: d9:52:42:8d:2a:7c (d9:52:42:8d:2a:7c)]

[Destination: Motorola_bf:5d:49 (40:88:05:bf:5d:49)]

v Bluetooth HCI Ha4
[Direction: Rcvd (0x01)] < Menu Charts ?
HCI Packet Type: ACL Data (0x02)

» Bluetooth HCI ACL Packet SUMMARY CHARTS MEASURE

v Bluetooth L2CAP Protocol

Length: 20 - 07 August 2019
CID: Attribute Protocol (0x0004)
v Bluetooth Attribute Protocol

v Opcode: Handle Value I.ndic.ation. (0x1d) systolic 88mmHg ‘
0... = Authentication Signature: False Blood
.0.. = Command: False Pressure

..01 1101 = Method: Handle Value Indication (@x1d)

v Handle: (@x000b) (Unknown: Unknown)

[Service UUID: Unknown (@x7809)] Diastolic 56mmHg 1
[UUID: Unknown (@x8a91)] p,B.J:::re
[Response in Frame: 600] Opcode Systolic Blood Pressure

TimeStam‘;/ Handle / Heart 1

Rate

0000 02 06 20 18 00 14x00 04 00(1d)Xeb) 00 3e (58 00 38 s seean coe o >X-8
0010 (00 47 00(f1 d2 @d 12)4c) 00 00 00 00 00 Grreee L :---:
N e oo o |
Diastolic Blood Pressure

Heart Rate ATT Data

Figure 4.4: The Bluetooth HCI logs of the readings sent by the device to the app.

reverse engineer the BLE communication protocol by reading the source code. A snip-
pet of the source code in C# is shown in Listing 4.7 This shows a serious vulnerability,

since we can understand in detail how the application was developed.

Listing 4.7: onReadPassword

1 |public override void OnReadPassword (byte[] bytes) {

2 uint num = bytes[1l];

3 uint num2 = bytes([2];

4 uint num3 = bytes[3];

5 uint numé4 = bytes[4];

6 uint password = num | (num2 << 8) | (num3 << 16) | (

numé4 << 24);

7 base.StateMachine.CurrentDevice = new
BloodPressureDevice {

8 UUID = base.StateMachine.Bluetooth.
getConnectedDevice (),

9 Password = password

20

21

22

23

Chapter 4. Security Analysis 25

}i

uint numb5 = (uint) (DateTime.Now - base.StateMachine.
Epoch) .TotalSeconds;

byte[] array = new byte[5];

num = (numb & OXFF);

num2 = ((numb >> 8) & 0xFF);
num3 = ((numb >> 16) & O0xFF);
num4 = ((numb >> 24) & O0xFF);
array[0] = 33;

array[l] = (byte)num;
array[2] = (byte)num2;
array[3] = (byte)num3;

array [4] = (byte)numi4;

base.StateMachine.Bluetooth.writeCharacteristic (

BloodPressureContants.write2_char, array);

4.3.3 BLE Protocol

Figure 4.5 shows the BLE communication protocol used by the android application.
It respectively illustrates how the device communicates with the Android application
on two different use cases, Pairing and Reading. We can only infer the protocol from
the application perspective since we don’t have the source code of the blood pressure

monitor device available.

4.3.3.1 Pairing

The application uses the pairing process to remember the UUID of the connected de-
vice. It simply uses the UUID to connect the device directly. Note that the application
did not use the BLE secure pairing feature in the BLE standard. This shows that an
attacker could install malware to passively logs the BLE packets.

Pairing Protocol:

1. The device has to be switched to ”Pairing mode” and starts to advertise the GATT

service.

Chapter 4. Security Analysis 26

Pair_Waiting [Bluetooth Scanning -_ ConnectDevice
ForPress ! ConnectDevice '
v g oo Conmnected |
i
Enable Notification -L
: Read 5 ReadChalle:
' d_ nge L
oo omeeted] | Reading :
[Enable Notification i return ReadChallenge }i
T N ettt [}
T i
Pair_Waiting | ReadPasaword :
“ ' Read_ i sendTime |
! Reading2 4B TV
return ReadPassword return
- T > e :
i
]
air =i e N T
Pair_Waitingl g8 ReadChallenge Read_ .- Sendz2 I
' H Ead”‘lg 3 E‘:E:- o -r?t-u-rti!u!ﬂla;s-u-r-efrre-r!t? -------- I
return ReadChallenge _}E i :
: : !
. " ! - L
Pair_Waiting2 Read_ ' Bluetooth Disconnect ;
Reading4 D‘ i
i
i
- Parse Data i
j !
et i
[i
i

(a) Pairing the device. (b) Taking a measurements.

Figure 4.5: The BLE communication protocol reverse engineered.

2. The app initiates the process by connecting for GATT services which contain
characteristic UUID of 0x7809.

3. The device initiates ReadPassword by sending a 5 byte (OxA07C2A8D42) to the
phone and in return sends the current timestamp to the device. The first byte
0xAO is used by the app to proceed with the pairing process whereas the last 4

bytes are stored as a password associated with the UUID of the device.

4. The device then initiates ReadChallenge by sending another 5 bytes (OxA103C3104D)
to the phone. Similarly, the first byte OxA1l is used as a flag to notify the app.

Chapter 4. Security Analysis 27

In response, the app takes the last 4 bytes of the data received and do a bit-wise
XOR operation with the password received in step 2. The result is then sent to

the device.

5. This follows with the app sending a 0x22 to trigger a disconnect action to the

device. The pairing process completes when the connection terminates.

Listing 4.8: The source code that shows that the application authenticates the blood

pressure monitor by only using MAC address (UUID).

public override void StateStarted ()
{
base.StateStarted () ;
base.StateMachine.Bluetooth.connectDevice (base.
StateMachine.CurrentDevice.UUID,

BloodPressureContants.svcl, null, null);

4.3.3.2 Reading

The application only syncs and upload measurements at the same time the user take
the readings. This means that the application does not accept previously measured
readings to be synced to the app. It has to be added manually by the user.

Reading Protocol:

1. The device starts to advertise the GATT service after reading was made.

2. The app searches and connects to the GATT service which contains characteristic
UUID of 0x7809.

3. The device then initiates ReadChallenge by sending 5 bytes (0xA103C3104D)
to the device. The app has to take the previously stored password and apply a
bit-wise XOR operation to the received challenged data. It is then sent to the

device.
4. The app then sends a 0x22 to trigger a disconnect action to the device.

5. In the meantime, the device would write the raw measurement data associated

with a timestamp to the characteristic and disconnect the connection.

6. The app would then parse the data after the connection terminates.

Chapter 4. Security Analysis 28

We could infer that the monitor device checks if the application is authentic by

sending ReadChallenge in the protocol.

File Edit View Search Terminal Help

Start scanning

ing for target device's MAC Address

Setting n
DEVICE C
ConnectionCall
Initiate Chall
Initiate Challe
Initiate Chal

dataWrittencC
datawritten
aWritten

JOR W W
[N N N)

w
e

Figure 4.6: The logs of the fake BLE device in action.

4.4 Custom BLE Device

By following the protocol above, we can program a BLE device to impersonate the
blood pressure monitor device. The device would be deployed in proximity to the
user and try to cause a DDoS attack. This is done by spoofing fake measurements
when the user is trying to sync the measurements through the application. We used a
Nordic nRF51-DK development kit with the MbedOS library that provides basic BLE
functionality.

The fake BLE device is programmed to work in two distinct modes. The first mode
is to scan for the MAC address of the blood pressure monitor, where as the second
mode is to actively spoof false measurements to the smart phone.

On startup, the fake BLE device would try to scan passively for the blood pressure
monitors device. The device would look for BLE advertisement packets that contains
services with UUID of 0x7809. The device would then save the MAC address of that
BLE device that advertises the packets.

Chapter 4. Security Analysis 29

S®C >

Blood Pressure

< Menu

SUMMARY CHARTS MEASURE

Monitor is ready

Your monitor has been setup and is ready
to use. Press next to take a reading.

w o
400092
oaozER

www.nordicsemi.com

Figure 4.7: The application pairs with the fake BLE device (on the right) instead of the

Blood Pressure Monitor.

The fake BLE device would then actively broadcast itself with the same MAC
address as the blood pressure monitor. We used the fact that the smart phone only
remembers the MAC address for the ’paired’ blood pressure monitor. To spoof false
measurements, the fake BLE device simply follows the protocol describe in Section
4.3.3. Figure 4.6 shows the logs from the fake BLE device spoofing in action.

We show that the fake BLE device can both pair and sync with the application.
Figure 4.7 shows that the application is paired with the fake BLE device instead of the
blood pressure monitor. Figure 4.8 shows spoofed data are being synchronised to the
application instead of the true values.

We did a penetration testing on how likely the attack would happen. We did 20
separate measurements using the blood pressure monitor and tried to synchronise the
readings to the cloud service with the fake BLE device deployed in proximity. The
result is shown in Table 4.2. We notice that we are able to achieve 19 out of 20

spoofing for the measurements. However, this would require the fake BLE device to

Chapter 4. Security Analysis 30

Figure 4.8: The application have received spoofed data from the fake BLE device in-

stead of the actual reading measured with the blood pressure monitoring device.

Advertising Interval (ms) Spoof Reading Actual Reading

5000 0 20
1000 13
100 16
10 19

Table 4.2: Penetration testing with spoofing fake BLE measurements.

advertise in short advertising interval.
Here we show that it is possible to cause a DDoS attack on the mobile application.
However, this attack will work only if the fake BLE device is being selected to be

paired during the pairing stage. This is because the application remembers the device’s
BLE UUID that it pairs.

4.5 Denial of Service

By using another smartphone with Bluetooth capabilities, we can deny the connection

between the user’s application and the blood pressure monitoring device. This is shown

Chapter 4. Security Analysis 31

Devices DISCONNECT

BONDED A 0808A02BD20D1
DVERTISER o> 4 2 %

CONNECTED
NOT BONDE CLIENT
Generic Access

0x1800

Generic Attribute
0x1801

Unknown Service
00007809-0000-1000-8000-00805f9b34fb

Device Information
0x180A

Figure 4.9: Another BLE device that connects to the blood pressure monitor without

any authentication to deny connection with the application.

in Figure 4.9.

We have a second smartphone set up to scan and connect to the blood pressure
monitor when it is broadcasting. We can stop any other phone to connect to the moni-
tor. This includes the user’s phone that was paired to the monitor.

This is possible because there are not any authentication process connecting the
blood pressure device. The connection itself does not include the process of pairing or
bonding. We show that this exploit could be done by an attacker with any smartphone
with BLE capabilities.

Chapter 5
Discussion

In this chapter,we provide several recommendations to the design implementation to
mitigate these attacks. These recommendations can also be applied to other smart

blood pressure monitors or more general, loT devices.

5.1 Attack Mitigation

Certificate Pinning

We can tamper with the network packets by using MITM proxy on the android smart-
phone. This is possible due to the trust of the developer with the client’s device. Usu-
ally, the user can be easily tricked into installing a self-signed certificate into the device
to allow MITM attacks to succeed (Park et al., 2020). One way to mitigate this is to
implement certificate pinning in the application.

Certificate pinning is the process of associating the host with the expected certifi-
cate. This is usually done at development stage such that the certificate is stored in the
application. Other than that, the certificate could also be pinned on the first connection
to the server. Hence, if the connected server does not provide the pinned certificate,
the connection is then unsafe and should be dropped.

In general, there are various ways to bypass certificate pinning available (Daz-
Snchez et al., 2019). However, with certificate pinning, the complexity of the technique

to bypass it is increased.

32

Chapter 5. Discussion 33

Token Refreshing

Token refreshing should be used to prevent impersonation attacks. The authorization
token used by the application does not expire, hence, the token is associated with an
account for a lifetime. An attacker would only need to compromise the authorization
token once and as a consequence, the attacker would be able to apply client replay
attacks remotely.

To circumvent that, the token should be only be valid for a certain timeframe. Au-
thentication should be made after the token is expired, to request a new token. There-
fore, token compromised by an attacker would only be valid for a certain timeframe.

However, this introduces bad user experience to the mobile application. This is
because the user would need to enter login credentials every time the token is expired.
This could be improved by adding the notion of refresh token and access token. A
refresh token is a token that never expires whereas the access token is short-lived. The
access token is used by the clients to authenticate themselves whereas the refresh token
is used to request new access tokens when the old access token is expired.

One would ask, what happens when the refresh token itself is compromised. The
attacker would then be able to request for authorization token and this destroys the
purpose of having refreshing tokens. This is not the case, the server would be able
to detect if the refresh token is compromised. This can be done because the attacker
and the user would invalidate each other when they are trying to request a new access

token, which can be detected by the server.

Code Obfuscation

Code obfuscation should be applied to the source code on production. Code obfus-
cation is the process of making source code unreadable, while maintaining the same
functionality. This is important because source code can be reverse engineered easily
with the help of decompilers available online. In particular, the source code of android
application can be decompiled and recovered fairly easily (Eddy, 2014).

There are various tools to obfuscate source code such as Xamarin Dotfuscator (Pre-
Emptive, 2014). It is a NET. obfuscator that obfuscates the code and is developed us-
ing the Xamarin cross-platform framework. This would make the application harder
to reverse engineer by the attacker. In general, code obfuscation should be used in
production. However, code obfuscator does not prevent the application to be reverse

engineered, thus it is still important to have other security measures implemented in

Chapter 5. Discussion 34

the production.

Encryption of Sensitive Data

Important or sensitive data should be encrypted before transmission. This is because
the attacker would be able to sniff and log sensitive information, i.e., we demonstrated
that by using MITM Proxy, we can log account, password or NHS number. The sen-
sitive data should be encrypted with an extra layer of encryption to ensure that data

cannot be easily retrieved easily by an attacker.

BLE Security Authentication

BLE’s security feature should be used for pairing. This should be implemented because
un-authorised pairings could result in different attacks. In this paper, we demonstrated
that another user with a BLE device could pair with the blood pressure monitor without
any authorization. As a result, this causes the device to be denied service.

Other than that, BLE security pairing also provides end-to-end encryption. This

would prevent sensitive information to be sniffed by an eavesdropper.

5.2 Future Work

Future work in this paper concerns a more thorough security analysis on different at-
tack vectors. This would include applying different common exploits on targeted loT
devices.

The top security vulnerabilities for IoT in OWASP consists of hardware vulnerabili-
ties (Fredric Paul, 2019). This includes hardware tear-down of blood pressure monitors
to be able to extract information from left out debugging interfaces. Thus, we left this
hardware security analysis as a potential future work.

Besides, the secured update mechanism is often not implemented in both the firmware
of the devices and the application. This could lead to other exploits, such as injecting
malware into the firmware to apply a DDoS attack. This investigation could be done
on the targeted device as future work

Other than that, a comparative security study could be done on blood pressure
monitoring devices from different vendors. Hence we can have a broader and more
general security analysis on these devices. Other than that, we can show that what are

the common security vulnerabilities that exist in the device.

Chapter 5. Discussion 35

Finally, with all these security vulnerabilities in mind; research on ways to de-
tect and mitigate vulnerabilities on IoT devices should be done as future work. Oza
et al. (2019) shows a framework of preventing MITM attacks by luring attackers us-
ing decoys. Other than that, Duan et al. (2019) proposed a security framework for

published/subscribe based IoT communication.

Chapter 6
Conclusions

Security analyses that we conducted in this work show that IoT devices, more specif-
ically, health monitoring devices, contain serious security flaws. We applied multiple
security analyses on the Activ8rLives Blood Pressure Monitor that span through mul-
tiple attack vectors.

This includes communication hijacking using MITM proxy, compromising authen-
tication token to do client replay attacks, application decompiling with decompiling
tools, reverse engineer the BLE protocol and BLE device spoofing.

These are all general and common vulnerabilities and well known in the industry.
However, these vulnerabilities are not prevented and considered to be important in
production by product designers. This results in security exploits that are expensive to
patch by manufacturers. Moreover, these security patches and updates are not enforced
by the manufacturers. Other than that, the user does not upgrade their firmware as

much as they should. These lead to IoT devices to contain vulnerability indefinitely.

36

Bibliography

A tool for reverse engineering 3rd party, closed, binary android apps.

https://ibotpeaches.github.io/Apktool/, 2017.

Accenture. Accenture. digital trust in the iot era, 2015. URL https:
//www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/
Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/

Accenture-Digital-Trust.pdf.

Classen, Jiska, Wegemer, Daniel, Patras, Paul, Spink, Tom, and Hollick, Matthias.
Anatomy of a vulnerable fitness tracking system: Dissecting the fitbit cloud, app,
and firmware. Proceedings of the ACM Interactactive and Mobile Wearable Ubig-
uitous Technology, 2(1):5:1-5:24, March 2018.

Cyr, Bruce D., Horn, Webb, Miao, Daniela, and Specter, Michael A. Security analysis
of wearable fitness devices (fitbit). 2014.

Davidson, Robert. Getting started with bluetooth low energy. 2014.
Devopedia. Xamarin, version 11, 2018. URL https://devopedia.org/xamarin.

dgrunwald. Ilspy, open-source .net assembly browser and decompiler, 2019. URL

https://github.com/icsharpcode/ILSpy.

DigitalHealth. Special report: Remote monitoring and self-
care, 2018. URL https://www.digitalhealth.net/2018/04/

special-report-remote-monitoring-and-self-care/.

Duan, L., Sun, C., Zhang, Y., Ni, W., and Chen, J. A comprehensive security frame-
work for publish/subscribe-based iot services communication. [EEE Access, 7:
2598926001, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2899076.

37

https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://devopedia.org/xamarin
https://github.com/icsharpcode/ILSpy
https://www.digitalhealth.net/2018/04/special-report-remote-monitoring-and-self-care/
https://www.digitalhealth.net/2018/04/special-report-remote-monitoring-and-self-care/

Bibliography 38

Daz-Snchez, D., Marn-Lopez, A., Almenarez, F., Arias, P., and Sherratt, R. S. Tls/pki
challenges and certificate pinning techniques for iot and m2m secure communica-
tions. IEEE Communications Surveys Tutorials, pp. 1-1, 2019. ISSN 1553-877X.
doi: 10.1109/COMST.2019.2914453.

Eddy, Max. Rsac: Reverse-engineering an android app in five
minutes, 2014. URL https://uk.pcmag.com/opinion/10593/

rsac-reverse-engineering-an-android-app-in-five-minutes.

Fereidooni, H., Classen, J., Spink, T., Patras, P., Miettinen, M., Sadeghi, A.-R., Hol-
lick, M., and Conti, M. Breaking fitness records without moving: Reverse engineer-
ing and spoofing Fitbit. In Proceeding of International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Atlanta, GA, USA, September 2017.

Fielding, Roy, Gettys, Jim, Mogul, Jeffrey, Frystyk, Henrik, Masinter, Larry, Leach,
Paul, and Berners-Lee, Tim. Hypertext transfer protocol-http/1.1, 1999.

Fredric Paul, Networkworld. Top 10 iot vulnerabilities, 2019. URL https://www.
networkworld.com/article/3332032/top-10-iot-vulnerabilities.html.

Google. Secure your site with https, 2019. URL https://support.google.com/

webmasters/answer/6073543?hl=en.

IoT_Agenda. Current and future applications of iot in healthcare, 2018.
URL https://internetofthingsagenda.techtarget.com/feature/

Can-we-expect-the-Internet-of-Things-in-healthcare.

iscoop.eu. Iot security: smart business requires smarter inter-
net of things security, 2018. URL https://www.i-scoop.eu/

iot-security-smarter-internet-of-things-security/.

java decompiler. Java decompiler, yet another fast java decompiler., 2019. URL

https://java-decompiler.github.io.

Jeon, K. E., She, J., Soonsawad, P., and Ng, P. C. Ble beacons for internet of things ap-
plications: Survey, challenges, and opportunities. /IEEE Internet of Things Journal,
5(2):811-828, April 2018. ISSN 2327-4662. doi: 10.1109/JI0T.2017.2788449.

Maher, Carol, Ryan, Jillian, Ambrosi, Christina, and Edney, Sarah. Users’ experiences
of wearable activity trackers: a cross-sectional study.(survey). BMC Public Health,
17(1), 2017. ISSN 1471-2458.

https://uk.pcmag.com/opinion/10593/rsac-reverse-engineering-an-android-app-in-five-minutes
https://uk.pcmag.com/opinion/10593/rsac-reverse-engineering-an-android-app-in-five-minutes
https://www.networkworld.com/article/3332032/top-10-iot-vulnerabilities.html
https://www.networkworld.com/article/3332032/top-10-iot-vulnerabilities.html
https://support.google.com/webmasters/answer/6073543?hl=en
https://support.google.com/webmasters/answer/6073543?hl=en
https://internetofthingsagenda.techtarget.com/feature/Can-we-expect-the-Internet-of-Things-in-healthcare
https://internetofthingsagenda.techtarget.com/feature/Can-we-expect-the-Internet-of-Things-in-healthcare
https://www.i-scoop.eu/iot-security-smarter-internet-of-things-security/
https://www.i-scoop.eu/iot-security-smarter-internet-of-things-security/
https://java-decompiler.github.io

Bibliography 39

Matt Toomey, Aberdeen. Iot device security 1is being seriously ne-
glected, 2018. URL https://www.aberdeen.com/techpro-essentials/

iot-device-security-seriously-neglected/.

Orebaugh, Angela, Ramirez, Gilbert, Beale, Jay, and Wright, Joshua. Wireshark &
Ethereal Network Protocol Analyzer Toolkit. Syngress Publishing, 2007. ISBN
1597490733, 9781597490733.

Orlosky, Jason, Ezenwoye, Onyeka, Yates, Heather, and Besenyi, Gina. A look at the
security and privacy of fitbit as a health activity tracker. In Proceedings of the 2019
ACM Southeast Conference, pp. 241-244. ACM, 2019.

Oza, Antara Durgesh, Kumar, Gardas Naresh, Khorajiya, Moin, and Tiwari, Vineeta.
Snaring cyber attacks on iot devices with honeynet. In Peng, Sheng-Lung, Dey,
Nilanjan, and Bundele, Mahesh (eds.), Computing and Network Sustainability, pp.
1-12, Singapore, 2019. Springer Singapore. ISBN 978-981-13-7150-9.

Park, Junghoon, Son, Byeonggeun, Park, Junyoung, Kim, Myoungsu, and Yim, Kang-
bin. Unintended certificate installation into remote iot nodes. In Barolli, Leonard,
Xhafa, Fatos, and Hussain, Omar K. (eds.), Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing, pp. 845-854, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-22263-5.

Post, Washington. Charlie sheens hiv status and the dawn
of medical-data blackmail, 2015. URL https://www.
washingtonpost.com/news/to-your—-health/wp/2015/11/17/
charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/

?noredirect=on.

PreEmptive. Protecting xamarin apps, 2014. URL https://www.preemptive.com/

dotfuscator/pro/userguide/en/getting_started_xamarin.html.

pxb1988, Bob Pan. dex2jar, decompile dalvik executable (.dex/.odex) format., 2018.
URL https://github.com/pxbl1988/dex2jar.

ReadWrite. The 5 ways iot is about to change healthcare as we
know it 2018. URL https://readwrite.com/2018/05/22/

the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/.

https://www.aberdeen.com/techpro-essentials/iot-device-security-seriously-neglected/
https://www.aberdeen.com/techpro-essentials/iot-device-security-seriously-neglected/
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.preemptive.com/dotfuscator/pro/userguide/en/getting_started_xamarin.html
https://www.preemptive.com/dotfuscator/pro/userguide/en/getting_started_xamarin.html
https://github.com/pxb1988/dex2jar
https://readwrite.com/2018/05/22/the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/
https://readwrite.com/2018/05/22/the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/

Bibliography 40

Scotland, Gov. Heart disease in scotland, 2019. URL https://www2.gov.scot/

Topics/Health/Services/Long-Term-Conditions/Heart-Disease.

Scott Amyx, TechBeacon. 67 open source tools and resources for
iot, 2018. URL https://techbeacon.com/app-dev-testing/

67-open-source-tools-resources-iot.

Semiconductor., Nordic. nrf connect sdk, the bluetooth software development Kkit,

2019. URL https://www.nordicsemi.com/Software-and-Tools/Software.

Service, Indo Asian News. Cyberattacks grew 22% on india’s iot deployments
in g2, 2019. URL https://www.livemint.com/technology/tech-news/
cyberattacks-grew-22-on-india-s-iot-deployments-in-gq2-1565356789868.
html.

SIG., Bluetooth. Bluetooth core specification v5.0, 2019. URL https://www.
bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_1d=421043.

Symantec. Mirai: what you need to know about the botnet behind recent ma-
jor ddos attacks, 2016. URL https://www.symantec.com/connect/blogs/

mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks.

TheGuardian. Hackable implanted medical devices could cause deaths,
2019. URL https://www.theguardian.com/technology/2018/aug/09/

implanted-medical-devices-hacking-risks-medtronic.

Tuptuk, Nilufer and Hailes, Stephen. Security of smart manufacturing systems.
Journal of Manufacturing Systems, 47:93 — 106, 2018. ISSN 0278-6125. doi:
https://doi.org/10.1016/j.jmsy.2018.04.007. URL http://www.sciencedirect.
com/science/article/pii/S0278612518300463.

WPP. World population prospects, key findings and advance table, 2017. URL https:
//esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf.

Yaqoob, T., Abbas, H., and Atiquzzaman, M. Security vulnerabilities, attacks, counter-
measures, and regulations of networked medical devices areview. IEEE Communi-
cations Surveys Tutorials, pp. 1-1, 2019. ISSN 1553-877X. doi: 10.1109/COMST.
2019.2914094.

https://www2.gov.scot/Topics/Health/Services/Long-Term-Conditions/Heart-Disease
https://www2.gov.scot/Topics/Health/Services/Long-Term-Conditions/Heart-Disease
https://techbeacon.com/app-dev-testing/67-open-source-tools-resources-iot
https://techbeacon.com/app-dev-testing/67-open-source-tools-resources-iot
https://www.nordicsemi.com/Software-and-Tools/Software
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.theguardian.com/technology/2018/aug/09/implanted-medical-devices-hacking-risks-medtronic
https://www.theguardian.com/technology/2018/aug/09/implanted-medical-devices-hacking-risks-medtronic
http://www.sciencedirect.com/science/article/pii/S0278612518300463
http://www.sciencedirect.com/science/article/pii/S0278612518300463
https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf

	Introduction
	Background
	Related Work
	Bluetooth Low Energy
	Hypertext Transfer Protocol / Secure
	Information Assurance

	Methodology
	Activ8rlives Blood Pressure Monitor
	Communications Model

	Adversarial Model
	Attacker Capabilities
	Threat Scenarios

	Testbed
	Setup Environment
	MITM Setup

	BLE Debugging Tools
	Application Decompiling

	Security Analysis
	Transparent Proxying
	Packet Injection
	Activ8Live Application BLE Protocol
	HCI Logs
	Application Decompiling
	BLE Protocol

	Custom BLE Device
	Denial of Service

	Discussion
	Attack Mitigation
	Future Work

	Conclusions
	Bibliography

