
An Investigation into the Security

and Privacy of Blood Pressure

Monitors

Wei Tat Lee

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2019

Abstract

In this paper, we show security vulnerabilities found commonly in connected health-

care devices. The lack of security practices in the production of these devices is a major

concern for these devices before they become widespread in the healthcare sector. This

paper illustrates that these security issues are well-known and should be prevented by

the manufacturers, which is not the case in the majority of instances examined. This

is important because Internet of Things (IoT) devices are increasingly used to monitor

healthcare, and we see that security issues could become a major roadblock for these

devices to be relied on. In this project, we build a testbed to apply penetration test-

ing on the Activ8rLives Blood Pressure Monitor. We focus on analysing the security

vulnerabilities that exist on the network communication of the system. We show that

sensitive information is retrieved using MITM proxy. Besides, we also show that the

application uses a non-expired token to authenticate users, which allows client replay

attacks indefinitely. Denial of service attacks can also be made by using any device

with Bluetooth Low Energy (BLE) capabilities to hog the connection with the moni-

tor. This is due to the lack of authentication for the BLE communication. Next, we

show that the smartphone application is not obfuscated. Lastly, we programmed a

BLE-embedded device to spoof false measurements to the smartphone. We show that

BLE embedded device can spoof 19 out of 20 measurements made by the user. We

conclude that the blood pressure monitor itself provides the ease of connectivity, but

does not employ the common security practices. We also provide a few suggestions to

mitigate the exploits that we found in this paper. A comparative security study could

be applied to different blood pressure monitor from manufacturers as future work.

i

Acknowledgements

I would first like to thank my project supervisor Dr. Paul Patras of the School of

Informatics. I would also like to express my very profound gratitude to my friends

for proof reading my thesis. And lastly I would like thank my family for the unfailing

support and continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would not have

been possible without them.

Thank you.

ii

Table of Contents

1 Introduction 1

2 Background 4
2.1 Related Work . 4

2.2 Bluetooth Low Energy . 5

2.3 Hypertext Transfer Protocol / Secure 5

2.4 Information Assurance . 6

3 Methodology 8
3.1 Activ8rlives Blood Pressure Monitor 8

3.1.1 Communications Model . 9

3.2 Adversarial Model . 10

3.2.1 Attacker Capabilities . 10

3.2.2 Threat Scenarios . 11

3.3 Testbed . 12

3.3.1 Setup Environment . 13

3.3.2 MITM Setup . 13

3.4 BLE Debugging Tools . 14

3.5 Application Decompiling . 15

4 Security Analysis 16
4.1 Transparent Proxying . 16

4.2 Packet Injection . 18

4.3 Activ8Live Application BLE Protocol 21

4.3.1 HCI Logs . 22

4.3.2 Application Decompiling . 23

4.3.3 BLE Protocol . 25

4.4 Custom BLE Device . 28

iii

4.5 Denial of Service . 30

5 Discussion 32
5.1 Attack Mitigation . 32

5.2 Future Work . 34

6 Conclusions 36

Bibliography 37

iv

Chapter 1

Introduction

Statistics have shown the potential of IoT devices in the health care ecosystem through

its increasing use in daily self-cared monitoring devices (DigitalHealth, 2018). These

devices can be monitored remotely by health practitioners in real-time and are becom-

ing more common in replacing the need for body checkups in public health facilities

(IoT Agenda, 2018; ReadWrite, 2018). For example, as the proportion of the world’s

population and risk of getting high blood pressure increases over time and age (WPP,

2017), digital blood pressure monitoring devices can assist health practitioners provide

’early’ preventive actions for patients with the risk of heart attacks. Besides, digital

blood pressure monitoring devices are now commonly used by elderly people.

Under those circumstances, the trust in these connected medical devices is needed

inevitably (TheGuardian, 2019). However, having a system to be impenetrable has

always been a big challenge in this modern society.

Due to the nature of strict deadlines, manufacturers often focus on releasing new

features to compete in the market (Matt Toomey, 2018). This results in devices with

known security flaws being released to the consumers (Tuptuk & Hailes, 2018). Nev-

ertheless, user often rely on vendors for the protection of their data (Accenture, 2015),

which in most cases are not enforced. Inevitably, the security aspects of the production

are overlooked or neglected by the manufacturers.

With that in mind, there are an increasing number of cyber-attacks on these de-

vices (Service, 2019) as open-source hardware platforms and drivers are becoming

more prevalent (Scott Amyx, 2018) allowing individuals with minimal networking

and programming skills to hack such commodity web-connected devices. Cyber at-

tackers would try to exploit different kinds of vulnerabilities from unsecured devices

to achieve malicious goals. For instances, an attacker could gain monetary benefits by

1

Chapter 1. Introduction 2

removing service availability from competitors.

One example of these attacks is the Mirai Botnet Attack (Symantec, 2016). It

utilised unsecured IoT devices that were mainly configured to default factory settings

to employ a Distributed Denial of Service (DDoS). Also, the user themselves could be

applying the exploits themselves to gain monetary benefits. For example, NHS Scot-

land provides health services for hypertension patients (Scotland, 2019); this further

motivates users with malicious intents to spoof fake blood pressure readings to gain

these services.

Consequently, this led us to ask if we should trust these devices and constitutes a

major roadbloack towards deploying IoT devices in critical public services, as long as

their security remains under jeopardy. Therefore, we are going to identify the most

common security vulnerabilities present in the particular case of blood pressure moni-

toring devices within this project.

The rest of this paper is organised as follows. Chapter 2 presents related works

and also provides detail information on background technologies. We then present

the methodologies for our security analysis in Chapter 3 which includes building a

testbed and using various tools to assists in our analysis. Next, we present our results in

Chapter 4 on any security vulnerabilities on the Activ8lives Blood Pressure monitor.

We then suggest some design recommendations to mitigate the attack that we found in

Chapter 5. Finally, we summarise and make a conclusion of the project in Chapter 6.

Contributions and Findings

In this paper, we showed that the Activ8lives Blood pressure monitor is insecure. We

can exploit the device using multiple attack vectors which are shown as follows:

• A testbed is built to perform comprehensive security testing on the devices.

• MITM proxy is deployed to sniff unencrypted data transmitted to the cloud

server.

• False data is injected into the cloud server using replay attacks.

• The BLE communication protocol is reverse engineered.

• The application is decompiled and the source code is retrieved.

• A DDoS attack is applied to the smartphone application.

Chapter 1. Introduction 3

• An embedded device is programmed to spoof fake measurements which can be

automated.

Responsible disclosure:

Prior to submitting this thesis, we have disclosed all of the identified security vulnera-

bilities to Activ8rLives.

Chapter 2

Background

2.1 Related Work

With IoT devices forecast as being a focus on enterprise attacks (iscoop.eu, 2018),

heavy security analyses have been conducted on them. In particular, there is an exten-

sive research targeting Fitbit devices, which is leading the market for health-tracking

devices (Maher et al., 2017). Cyr et al. (2014) uncovered security weakness on the BLE

and network traffic of FitBit Flex which includes static MAC addressing and exposed

credentials during pairing. Furthermore, work has done by Fereidooni et al. (2017);

Classen et al. (2018), which looked into the protocol for data transmission across the

device, application and the cloud. In recent work, Orlosky et al. (2019) focused on the

security and privacy concerns used by third-party services.

To the best of our knowledge, no security analyses that specifically targets blood

pressure monitors devices has even been done. However, there have been more general

studies on the vulnerabilities of medical devices, including devices that are not con-

nected to the internet. In general, the recent work done by Yaqoob et al. (2019), con-

ducted a study on hundreds of state-of-the-art networked medical devices and showed

multiple vulnerabilities that exist in these devices.

All this research demonstrated how IoT devices, in general, contain security vul-

nerabilities that are common and attacks that are unique and highly specific. We look

into these common exploits and apply them to blood pressure monitoring devices. In

this paper, we focus on the communication protocol between the devices, the applica-

tion and cloud services.

4

Chapter 2. Background 5

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) or short for Bluetooth Smart, is a short-range radio wave

communication standard developed by Bluetooth SIG (SIG., 2019). BLE enabled de-

vices simplify data transmission between two devices. In particular, its usage has

shown to increase in the industry setting for IoT devices (Jeon et al., 2018). This

is because BLE is designed to provide low power consumption. Most importantly,

this greatly benefits IoT embedded devices, which normally are not powered with an

AC/DC supply.

BLE uses the notation of profiles and services to define the functionality of the de-

vices. The generic access profile (GAP), defines the base profile for devices to discover

and connect. It also defines how the devices are paired with each other to have secured

end-to-end encryption.

The data transfer between the devices after a connection is established is defined

by the Generic Attribute Profile (GATT). Services are objects that contain multiple

characteristics. These are used to organise larger data into a smaller chunk of data. The

characteristic itself is the lowest level that contains a single data entity. Bluetooth SIG

had officially defined a list of profiles that encapsulates services and characteristics that

cover usual use cases. Figure: 2.1 shows the predefined service for heart rate monitor

devices.

GATT is built on top of the Attribute Protocol (ATT), which establishes how the

data is being transported and stored. It formats data into services and characteristics

which are encapsulated in a single GATT entity. Each of these objects is uniquely

identified with a unique handle and a pre-defined 16-bit or 128-bit Universally Unique

Identifiers (UUID).

2.3 Hypertext Transfer Protocol / Secure

HyperText Transfer Protocol Secure (HTTPS) is a secured communication protocol

(Google, 2019) extended from HTTP (Fielding et al., 1999). It is built on top of the

Transport Layer Security Protocol (TLS), which is a cryptographic layer that provides

a secure communication across HTTP connections. In other words, a server and client

that uses HTTP to communicate are encrypted end-to-end. This gives the assurance

that an attacker with malicious intent would not be able to eavesdrop on sensitive

information from the communication.

Chapter 2. Background 6

Figure 2.1: The Heart Rate Service Profile defined by Bluetooth SIG. (Davidson, 2014)

However, this can be circumvented when an attacker is in between the server and

the client. The attacker tricks the client that they are the server and the server to be the

client. This is known as the Man in the Middle (MITM) attack. This brings out the

notion of digital certificates, which certify that the server itself is the rightful owner

of the server. However, this can only be signed by a trusted Certificate Authorities

(CA). Typically, client devices have a list of CA to be trusted, called root certificates.

Thus, a malicious party would not be able to eavesdrop on the communication unless

a self-signed certificate have been installed in the client’s device.

2.4 Information Assurance

In this section, we will analyse the security aspects of the system based on information

assurance.

Information assurance is defined as a set of processes or practices that ensure that

information is processed or managed properly. The processes include the assurance of

confidentiality, integrity, availability, authentication and non-repudiation. It is widely

used as a measure to protect and defend information systems. This also applies to IoT

systems, and below we explain how this concept applies to this project:

1. Confidentiality - Information that is stored, stayed secret unless it is intended

to be revealed. We want data to be secured such that it stays private from non-

Chapter 2. Background 7

authorised parties.

2. Integrity - Maintaining the consistency and trustworthiness of the information

over its lifecycle. We want to ensure that the blood pressure readings are trust-

worthy and not tampered with.

3. Availability - The service of making sure the offered functionality is provided

when needed. We want to make sure that the user can use the blood pressure

monitor when it is supposed to be available.

4. Authentication - The process of confirming and authenticating the user’s iden-

tity. We have to make sure that the cloud system does not allow an unauthenti-

cated user to upload readings on behalf of others.

5. Non-repudiation - The assurance that someone cannot deny the validity of any

action. We want to make sure that the proof of origin of any action or data is

protected.

Chapter 3

Methodology

In this chapter, we talk about the methods that we used to explore the vulnerabilities

that are available in the device. As we mentioned before, we will be targeting the

Activ8rLives Blood Pressure monitor in this report. We show in detail the system

architecture and the communication model of the device. We then outline different

attack scenarios that would apply to general blood pressure monitors. We then describe

the testbed configuration that we will be using and also various tools to reverse engineer

communication protocol.

3.1 Activ8rlives Blood Pressure Monitor

The Activ8rlives Blood Pressure Monitor is one of the most affordable models in the

market and it is commonly used by households to monitor daily blood pressure. User

can sync and upload measurements through smartphones. This allows the user to keep

track of the blood pressure readings periodically.

Figure 3.1: The communication model of Activ8rLives blood pressure monitor

8

Chapter 3. Methodology 9

Figure 3.2: The application user interfaces.

3.1.1 Communications Model

The blood pressure monitor follows the usual IoT Paradigm. The device uses a smart-

phone as a gateway to upload blood pressure readings to the cloud. This is shown in

Figure 3.1. The smartphone app is used to propagate data to the cloud server. The

data is transmitted to the smartphone with BLE, and the app uploads data to the cloud

using RESTful API provided by the server.

The user could read and track the blood pressure using the application. The user

interface (UI) provides tracking different health information besides blood pressure

readings. This is shown in Figure 3.2. Other than that, the user could also use the web

interface dashboard to check the readings on a web browser.

Pairing

The user has to pair the device with the smartphone application before uploading blood

pressure readings to the cloud server. The ”pairing” process is shown in Figure 3.3.

The user has to switch the device into ”pairing” mode before starting the pairing pro-

cess. After the ”pairing” process completes, the user does not need to re-pair the device

again.

Chapter 3. Methodology 10

Figure 3.3: The app user interface for pairing the device with the smart phone

Reading

Blood pressure readings are uploaded right after the measurements are taken. Old

measurements have to be added manually by the user. Measurements added manually

are marked differently compared to measurements uploaded by the device. This shows

that fake measurements added by the user could be spotted easily in the application.

Figure: 3.4 shows the reading process used by the application. The user has to trigger

the reading process from the application before taking the readings.

3.2 Adversarial Model

In this chapter, we apply some threat modelling to show different attacking scenarios.

We first describe the capabilities of the attacker to exploit the vulnerabilities of the de-

vice. Next, we discuss different scenarios that could benefit an attacker with nefarious

intentions.

3.2.1 Attacker Capabilities

We assume that the attacker has set up a MITM proxy. This allows the attacker to

transparently interfere and tamper with the communication packets.

Chapter 3. Methodology 11

Figure 3.4: The app user interface for taking a measurements and sync to the cloud.

3.2.2 Threat Scenarios

1. Denial of Service : Attacker can potentially deny service by uploading a reading

to the server which results overwhelms the user with a huge quantity of inaccu-

rate information. This violates the integrity of data in the process of information

assurance.

• Communication Hijacking - Bluetooth communication without proper au-

thentication might result in denial of service. The attacker can exploit this

and pair with the device to hijack the communication.

• Fake Bluetooth Device - An attacker could deploy smart BLE devices that

could send fake measurements to the user’s mobile phone.

• False Malware Updates - Unsigned firmware updates could potentially al-

low the attacker to inject malware to either the device or the application.

This would stop the device from working or, in the worst case, brick the

device.

2. User Impersonation : User impersonation can cause harm to the user both phys-

ically and psychologically. The attacker could submit false blood pressure read-

ings which lead to wrong medical prescriptions. This might cause a user with

good health to think they have hypertension, at the same time would cause rep-

Chapter 3. Methodology 12

utation damage to the device manufacturer.

• Packet Injection - Communications that are not encrypted can be sniffed by

attackers. This allows the attackers to modify and replay the packets to the

server which could lead to false readings submitted to the server.

• False Authentication - Pairing without any authentication will allow the

attacker to pair the device without the user noticing.

3. Spying : Spying is the act of obtaining information without the knowledge of

the compromised user. The attack surface for spying can span through a wide

spectrum of attack surfaces but, in this paper, we focus on the network commu-

nication between the devices.

• Packet Sniffing Ongoing Communications - Data without proper encryption

would expose sensitive information to attackers.

• Black Mailing - The attacker could blackmail a user with sensitive health

data. For example, an actor has been blackmailed on disclosing HIV posi-

tive results to the public (Post, 2015).

3.3 Testbed

We deployed a general testbed to analyse or identify any security flaws in the targeted

device. The testbed was built such that we could repeat the analysis to multiple devices.

We assume that the medical device uses a smartphone as a gateway to propagate data

to the cloud server. We will be using a Moto G - 3rd with Android (ver 5.1.1) as our

mobile device. We also used a Linux based laptop running Ubuntu 18.04 LTS as the

OS to run and set up the testbed. In Section 3.3.1, we will discuss in detail testbed

setup.

Source Code 3.1: /etc/network/interfaces

1 auto ${AP interface}

2 iface ${AP interface} inet static

3 address 172.25.1.1

4 netmask 255.255.255.0

5 network 172.25.1.0

Chapter 3. Methodology 13

6 auto ${Native interface}

7 iface ${Native interface} inet dhcp

3.3.1 Setup Environment

The testbed environment is set up to allow transparent HTTP/S transmission between

the phone app and the server. In the testbed, we manually set up a custom WiFi Access

Point (AP) that our smartphone will be connecting to.

The hostapd service is used to configure the external Wifi Adapter (ALFA Network

AWUS036NHA) as the custom Wifi AP. Meanwhile wpa supplicant is used to configure

the native wireless adapter to connect to an actual WiFi network. Source Code 3.1
shows the interface configuration file. We can see that static IP address is configured

for the AP interface whereas dynamic IP address is configured for the native WiFi

interface.

Source Code 3.2: Port Forwarding Rules

1 iptables -A FORWARD -i ${AP interface} -o ${Native interface} -j ACCEPT

2 iptables -A FORWARD -i ${Native interface} -o ${AP interface} -m state

--state ESTABLISHED,RELATED -j ACCEPT↪→

3 iptables -t nat -A POSTROUTING -o ${AP interface} -j MASQUERADE

Besides, we used isc-dhcp-server to dynamically allocate IP addresses to clients

that connect to the AP. At the same time, we used google DNS (8.8.8.8) with dnsmasq

to resolve DNS names. Finally, we enabled and appended some port forwarding rules

to forward the packets from the AP interface to the native interface, as shown in Source
Code 3.2.

3.3.2 MITM Setup

We setup a MITM proxy on the AP interface to intercept the communication between

the device and the cloud server. We simply redirect packets from port 80 (HTTP) and

443 (HTTPS) packets through port 8080 (MITM proxy) which is shown in Source
Code 3.3. The final configuration of the testbed is shown in Figure 3.5. Note that,

Chapter 3. Methodology 14

Figure 3.5: The testbed structure to setup MITM proxy.

we installed a fake Certified Authority (CA) certificate on the Android smartphone to

allow us to look into HTTPS packets.

Source Code 3.3: MITM port redirect rules.

1 iptables -t nat -A PREROUTING -i ${AP interface} -p tcp --dport 80 -j

REDIRECT --to-port 8080↪→

2 iptables -t nat -A PREROUTING -i ${AP interface} -p tcp --dport 443 -j

RERIRECT --to-port 8080↪→

3.4 BLE Debugging Tools

We used various BLE debugging tools to reverse engineer the BLE protocol between

the device and the app. Using these tools we can understand and analyze any security

vulnerabilities available in the BLE protocol.

We used the Android app nRF Connect (Semiconductor., 2019) to understand the

BLE GATT characteristics and services that are used. It provides a friendly interface to

debug BLE GATT services and thus give more information on the BLE communication

used by the device.

Furthermore, we logged the BLE packets between the smartphone and the device.

Chapter 3. Methodology 15

Logging is enabled on Android smartphones through developer mode. The logs are

then analysed, using the open-source packet analyser, Wireshark (Orebaugh et al.,

2007).

3.5 Application Decompiling

To further reverse engineer the protocol, we decompiled the Android application using

various tools. We used APK Extractor, to extract the APK of the android app. We then

further decompile the APK into source code by using APKTool (apk, 2017), Dex2JAR

(pxb1988, 2018) and JDGui (java decompiler, 2019).

Chapter 4

Security Analysis

In this chapter, we talk about how we apply the exploits on the Activ8rLives Blood

Pressure monitor device. In particular, we logged sensitive information using MITM

proxy such as National Health Security (NSH) number. We showed that the data are

structured in clear JavaScript Object Notation (JSON) format. Moreover, we injected

false data into the cloud by using non-expiring tokens. Next, we reverse engineered

the BLE communication protocol between the device and the application. We then

programmed a BLE device to spoof fake data through the smartphone app.

4.1 Transparent Proxying

We can transparently sniff the communication between the Android application and the

server. With TLS/SSL stripped from the protocol, we can fully compromise HTTPS

calls to the vendor’s server. This shows that the vendor used a self-signed certificate to

secure communications.

This is a common vulnerability: by using MITM proxy, private information such

as email, password and National Insurance Number (NHS) are being transmitted unen-

crypted over the air in plain JSON. JSON is a lightweight data format widely used on

the web. The intercepted JSON is shown in Listing 4.1. This would allow the attacker

to use the user’s identity to gain monetary advantages.

Listing 4.1: The request body sent to the server in plain text JSON format on account

creation.

1 {
2 "user -type": "user",

3 "user -username": "testing123@gmail.com",

16

Chapter 4. Security Analysis 17

4 "user -password": "123456789Qwertyuiop",

5 "NHS": "xxxxxxxx",

6 "user -first -name": "test",

7 "user -last -name": "ing",

8 "user -nickname": "test",

9 "user -dateofbirth": "2006-07-16T17:05:28.654Z",

10 "user -gender": "M",

11 "user -weight -units": "kg",

12 "user -height -units": "cm",

13 "user -receive -marketing": "False",

14 "user -units": "metric",

15 "Fev1-target": 2.25,

16 "Pef-target": 283,

17 "Step -target": 10000,

18 "Activity -target": "60",

19 "Weight -target": 66,

20 "Stride -length": 60,

21 "Weight": 60,

22 "Height": 150

23 }

On account creation, the server generates a token and a UserID, both of which are

sent as a plain text response to the user application. This is shown in Listing 4.2. They

are also sent when the user is logging into the application as shown in Listing 4.3.

Listing 4.2: Profile Creation Response

1 {
2 "user_id": 63378,

3 "token": "a149e309c2796e11b8a467eabed7850c1aa22aee"

4 }

Listing 4.3: Login Response

1 {
2 "user_id": 63363,

3 "token": "06e40a343d9a183c92515bfc0fd5bb4d22f4e891",

4 "password_age": "2019-07-14T19:23:39.239131+00:00"

Chapter 4. Security Analysis 18

5 }

Figure 4.1: HTTP Request Headers for posting measurements.

4.2 Packet Injection

Once a measurement reading is sent to the Android application through BLE, the app

then sends an HTTP POST request to the server. The header and body are shown in

Figure 4.1 and Listing 4.4 respectively. The server in return replies with a unique

event id as shown in Listing 4.5

Listing 4.4: Post Measurements

1 {
2 "guid": "5ac68840-8a76-482d-9b0a-4db60323eafe",

3 "start_date": "2019-07-18T11:57:48.096448Z",

4 "end_date": "2019-07-18T11:57:48.096448Z",

5 "source": "bloodpressure",

6 "data_types": [

7 "Systolic -Blood -Pressure",

8 "Diastolic -Blood -Pressure",

9 "Pulse"

10],

11 "data": [0, 0, 0],

12 "owner": "6636"

13 }

Listing 4.5: Post Measurements Response

1 {

Chapter 4. Security Analysis 19

2 "url": "/api/0.1/events/58601650/"

3 }

We used the MITM Proxy to intercept the communication between the app and the

vendor’s server. This is done while the user is taking a reading and syncing through the

mobile application. The proxy intercepted the response and changed it to a different

value by the attacker. The values are only tampered with in transit to the server and

hence, the user would not notice any changes in either the app or the blood pressure

monitor. However, we can see that the values are changed when using the web interface

as shown in Figure 4.2.

Figure 4.2: The Web Interface for Activ8rLive services with spoofed data being up-

loaded to the server.

Chapter 4. Security Analysis 20

We noticed that only the token and the UserID are used by the server to authenticate

the user. Most importantly, the authentication token itself does not expire. This allows

the attacker to apply replay attacks once the authentication token is compromised.

Source Code 4.1: get reading.sh

1 curl -k \

2 -H 'Authorization:token '"${AUTHTOKEN}" \

3 -H 'Host:api.activ8rlives.com' \

4 'https://51.179.221.21/api/0.1/ events/?owner='"${USERID}"'&

data_types=Diastolic-Blood-Pressure &order_by=-start_date&count=1'↪→

Source Code 4.2: post reading.sh

1 curl -k \

2 -H 'Content-Type:application/json; charset=utf-8' \

3 -H "Authorization:token ${AUTHTOKEN}" \

4 -H 'Host:api.activ8rlives.com' \

5 -X POST 'https://51.179.221.21/api/0.1/events/' \

6 --data-binary '[{"guid":"5ac68840-8a76-482d-9b0a-4db60323eafe",

"start_date":"2019-07-18T11:57:48.096448Z",

"end_date":"2019-07-18T11:57:48.096448Z", "source":"bloodpressure",

"data_types":["Systolic-Blood-Pressure", "Diastolic-Blood-Pressure",

"Pulse"],"data":[19.0,19.0,19.0],"owner"'":${USERID}}]"

↪→

↪→

↪→

↪→

This allows the attacker to remotely retrieve or submit false readings. The attacker

would only need to hijack the connection and retrieve the relevant authorization token

and UserID. This could be done using a command-line tool to make HTTP calls such

as cURL. The example of the script and response in JSON are shown in Source Code
4.1 and JSON 4.6 respectively. Note that we used the -k suffix in cURL because the

vendor does not use a CA-signed certificate.

Listing 4.6: JSON response to retrieve recent measurements reading using cURL.

1 {
2 "end_date": "2019-07-26T19:55:58.606800Z",

3 "id": 59146118,

4 "guid": "192edcf9-f17e-44d7-a832-7b56ad6e1ce6",

Chapter 4. Security Analysis 21

5 "user": 63342,

6 "related_to": null,

7 "data": [3, 2, 1],

8 "owner": 63342,

9 "data_ids": [38, 53, 53],

10 "data_types": ["Pulse","Diastolic -Blood -Pressure","

Systolic -Blood -Pressure"],

11 "modified": "2019-07-26T19:55:55.348649Z",

12 "replaces": null,

13 "url": "/api/0.1/events/59146118/",

14 "start_date": "2019-07-26T19:55:58.606800Z",

15 "source": "bloodpressure",

16 "replaced_by": null,

17 "created": "2019-07-26T19:55:55.348612Z"

18 }

4.3 Activ8Live Application BLE Protocol

To understand the BLE protocol between the device and the Android app, we used the

BLE debugger tool, Nordic Connect (Semiconductor., 2019). We can conenct with the

monitor without any authentication steps required. We discovered a proprietary ser-

vice with a 16-bit UUID of 0x7809 that consists of 5 different characteristics which

is shown in Table 4.1. We can see that read1, read2 and write1 are setups with NO-

TIFY/INDICATE flag. This would allow the server (blood pressure monitor) to notify

the client (app) if there is a new value written to the characteristic.

Now, we can infer that the device mainly uses this propriety service to communi-

cate with the app. For us to understand the protocol, we inspect the BLE packets at a

high level using HCI logging. Also, we decompiled the app to look at the source code

for further clarification of the protocol.

Figure 4.3 shows the screenshot of the custom service. However, we were not able

to retrieve any other information other than the serial code and firmware model from

the General Access Service.

Chapter 4. Security Analysis 22

Figure 4.3: The custom service with characteristics advertised by the Activ8Live blood

pressure monitor.

4.3.1 HCI Logs

In this section, we look at the BLE packets to understand and reverse engineer the

communication protocol. The logs were logged and retrieved by enabling HCI logging

in developer mode. Figure 4.4 shows one of the characteristics being sent in Attribute

Transfer Protocol (ATT).

We used the WireShark tool to format the data in a more readable format. The

opcode with 0x1d, show that it is an indication value sent by the GATT server. It has

the handle, 0x000b to indicate that it is under the GATT service, 0x7809 which contains

GATT characteristic of 0x8a91. Next, the blood pressure readings are embedded in the

payload.

Source Code 4.3: Snippet of the MainActivity.java

1 public class MainActivity extends

md5da774518c0af898c1651afda07f7148f.MainActivity

Chapter 4. Security Analysis 23

Type UUID NAME FLAG

Service 0x7809 Service READ

Characteristic 0x8A82 read1 INDICATE

0x8A91 read2 INDICATE

0x8A90 read3 READ

0x8A92 write1 NOTIFY

0x8A81 write2 WRITE

Table 4.1: The GATT proprietary service from the blood pressure monitor device as the

GATT server.

2 implements IGCUserPeer

3 {

4

5 public MainActivity()

6 {

7 if(getClass() == com/activ8rlives/activ8rlives4/

MainActivity)

8 TypeManager.Activate("Activ8rlives4.Droid.

MainActivity , Activ8rlives4.Droid", "",

this , new Object[0]);

9 }

10

11 private native void n_onCreate(Bundle bundle);

12 }

4.3.2 Application Decompiling

To further reverse engineer the communication protocol we decompiled the Android

application. ApkTool, Dex2Jar and JAD were used to retrieve the source code, which

is shown in Code 4.3. We noticed that the app was developed using the cross-platform

framework, Xamarin (Devopedia., 2018). We then used a .NET decompiler (dgrun-

wald., 2019) to decompile the assemblies contained in the APK file.

The source code itself is in plain text and it is not obfuscated. We were able to

Chapter 4. Security Analysis 24

Figure 4.4: The Bluetooth HCI logs of the readings sent by the device to the app.

reverse engineer the BLE communication protocol by reading the source code. A snip-

pet of the source code in C# is shown in Listing 4.7 This shows a serious vulnerability,

since we can understand in detail how the application was developed.

Listing 4.7: onReadPassword

1 public override void OnReadPassword(byte[] bytes){

2 uint num = bytes[1];

3 uint num2 = bytes[2];

4 uint num3 = bytes[3];

5 uint num4 = bytes[4];

6 uint password = num | (num2 << 8) | (num3 << 16) | (

num4 << 24);

7 base.StateMachine.CurrentDevice = new

BloodPressureDevice{

8 UUID = base.StateMachine.Bluetooth.

getConnectedDevice(),

9 Password = password

Chapter 4. Security Analysis 25

10 };

11 uint num5 = (uint)(DateTime.Now - base.StateMachine.

Epoch).TotalSeconds;

12 byte[] array = new byte[5];

13 num = (num5 & 0xFF);

14 num2 = ((num5 >> 8) & 0xFF);

15 num3 = ((num5 >> 16) & 0xFF);

16 num4 = ((num5 >> 24) & 0xFF);

17 array[0] = 33;

18 array[1] = (byte)num;

19 array[2] = (byte)num2;

20 array[3] = (byte)num3;

21 array[4] = (byte)num4;

22 base.StateMachine.Bluetooth.writeCharacteristic(

BloodPressureContants.write2_char , array);

23 }

4.3.3 BLE Protocol

Figure 4.5 shows the BLE communication protocol used by the android application.

It respectively illustrates how the device communicates with the Android application

on two different use cases, Pairing and Reading. We can only infer the protocol from

the application perspective since we don’t have the source code of the blood pressure

monitor device available.

4.3.3.1 Pairing

The application uses the pairing process to remember the UUID of the connected de-

vice. It simply uses the UUID to connect the device directly. Note that the application

did not use the BLE secure pairing feature in the BLE standard. This shows that an

attacker could install malware to passively logs the BLE packets.

Pairing Protocol:

1. The device has to be switched to ”Pairing mode” and starts to advertise the GATT

service.

Chapter 4. Security Analysis 26

(a) Pairing the device. (b) Taking a measurements.

Figure 4.5: The BLE communication protocol reverse engineered.

2. The app initiates the process by connecting for GATT services which contain

characteristic UUID of 0x7809.

3. The device initiates ReadPassword by sending a 5 byte (0xA07C2A8D42) to the

phone and in return sends the current timestamp to the device. The first byte

0xA0 is used by the app to proceed with the pairing process whereas the last 4

bytes are stored as a password associated with the UUID of the device.

4. The device then initiates ReadChallenge by sending another 5 bytes (0xA103C3104D)

to the phone. Similarly, the first byte 0xA1 is used as a flag to notify the app.

Chapter 4. Security Analysis 27

In response, the app takes the last 4 bytes of the data received and do a bit-wise

XOR operation with the password received in step 2. The result is then sent to

the device.

5. This follows with the app sending a 0x22 to trigger a disconnect action to the

device. The pairing process completes when the connection terminates.

Listing 4.8: The source code that shows that the application authenticates the blood

pressure monitor by only using MAC address (UUID).

1 public override void StateStarted()

2 {

3 base.StateStarted();

4 base.StateMachine.Bluetooth.connectDevice(base.

StateMachine.CurrentDevice.UUID ,

BloodPressureContants.svc1 , null , null);

5 }

4.3.3.2 Reading

The application only syncs and upload measurements at the same time the user take

the readings. This means that the application does not accept previously measured

readings to be synced to the app. It has to be added manually by the user.

Reading Protocol:

1. The device starts to advertise the GATT service after reading was made.

2. The app searches and connects to the GATT service which contains characteristic

UUID of 0x7809.

3. The device then initiates ReadChallenge by sending 5 bytes (0xA103C3104D)

to the device. The app has to take the previously stored password and apply a

bit-wise XOR operation to the received challenged data. It is then sent to the

device.

4. The app then sends a 0x22 to trigger a disconnect action to the device.

5. In the meantime, the device would write the raw measurement data associated

with a timestamp to the characteristic and disconnect the connection.

6. The app would then parse the data after the connection terminates.

Chapter 4. Security Analysis 28

We could infer that the monitor device checks if the application is authentic by

sending ReadChallenge in the protocol.

Figure 4.6: The logs of the fake BLE device in action.

4.4 Custom BLE Device

By following the protocol above, we can program a BLE device to impersonate the

blood pressure monitor device. The device would be deployed in proximity to the

user and try to cause a DDoS attack. This is done by spoofing fake measurements

when the user is trying to sync the measurements through the application. We used a

Nordic nRF51-DK development kit with the MbedOS library that provides basic BLE

functionality.

The fake BLE device is programmed to work in two distinct modes. The first mode

is to scan for the MAC address of the blood pressure monitor, where as the second

mode is to actively spoof false measurements to the smart phone.

On startup, the fake BLE device would try to scan passively for the blood pressure

monitors device. The device would look for BLE advertisement packets that contains

services with UUID of 0x7809. The device would then save the MAC address of that

BLE device that advertises the packets.

Chapter 4. Security Analysis 29

Figure 4.7: The application pairs with the fake BLE device (on the right) instead of the

Blood Pressure Monitor.

The fake BLE device would then actively broadcast itself with the same MAC

address as the blood pressure monitor. We used the fact that the smart phone only

remembers the MAC address for the ’paired’ blood pressure monitor. To spoof false

measurements, the fake BLE device simply follows the protocol describe in Section
4.3.3. Figure 4.6 shows the logs from the fake BLE device spoofing in action.

We show that the fake BLE device can both pair and sync with the application.

Figure 4.7 shows that the application is paired with the fake BLE device instead of the

blood pressure monitor. Figure 4.8 shows spoofed data are being synchronised to the

application instead of the true values.

We did a penetration testing on how likely the attack would happen. We did 20

separate measurements using the blood pressure monitor and tried to synchronise the

readings to the cloud service with the fake BLE device deployed in proximity. The

result is shown in Table 4.2. We notice that we are able to achieve 19 out of 20

spoofing for the measurements. However, this would require the fake BLE device to

Chapter 4. Security Analysis 30

Figure 4.8: The application have received spoofed data from the fake BLE device in-

stead of the actual reading measured with the blood pressure monitoring device.

Advertising Interval (ms) Spoof Reading Actual Reading

5000 0 20

1000 13 7

100 16 4

10 19 1

Table 4.2: Penetration testing with spoofing fake BLE measurements.

advertise in short advertising interval.

Here we show that it is possible to cause a DDoS attack on the mobile application.

However, this attack will work only if the fake BLE device is being selected to be

paired during the pairing stage. This is because the application remembers the device’s

BLE UUID that it pairs.

4.5 Denial of Service

By using another smartphone with Bluetooth capabilities, we can deny the connection

between the user’s application and the blood pressure monitoring device. This is shown

Chapter 4. Security Analysis 31

Figure 4.9: Another BLE device that connects to the blood pressure monitor without

any authentication to deny connection with the application.

in Figure 4.9.

We have a second smartphone set up to scan and connect to the blood pressure

monitor when it is broadcasting. We can stop any other phone to connect to the moni-

tor. This includes the user’s phone that was paired to the monitor.

This is possible because there are not any authentication process connecting the

blood pressure device. The connection itself does not include the process of pairing or

bonding. We show that this exploit could be done by an attacker with any smartphone

with BLE capabilities.

Chapter 5

Discussion

In this chapter,we provide several recommendations to the design implementation to

mitigate these attacks. These recommendations can also be applied to other smart

blood pressure monitors or more general, IoT devices.

5.1 Attack Mitigation

Certificate Pinning

We can tamper with the network packets by using MITM proxy on the android smart-

phone. This is possible due to the trust of the developer with the client’s device. Usu-

ally, the user can be easily tricked into installing a self-signed certificate into the device

to allow MITM attacks to succeed (Park et al., 2020). One way to mitigate this is to

implement certificate pinning in the application.

Certificate pinning is the process of associating the host with the expected certifi-

cate. This is usually done at development stage such that the certificate is stored in the

application. Other than that, the certificate could also be pinned on the first connection

to the server. Hence, if the connected server does not provide the pinned certificate,

the connection is then unsafe and should be dropped.

In general, there are various ways to bypass certificate pinning available (Daz-

Snchez et al., 2019). However, with certificate pinning, the complexity of the technique

to bypass it is increased.

32

Chapter 5. Discussion 33

Token Refreshing

Token refreshing should be used to prevent impersonation attacks. The authorization

token used by the application does not expire, hence, the token is associated with an

account for a lifetime. An attacker would only need to compromise the authorization

token once and as a consequence, the attacker would be able to apply client replay

attacks remotely.

To circumvent that, the token should be only be valid for a certain timeframe. Au-

thentication should be made after the token is expired, to request a new token. There-

fore, token compromised by an attacker would only be valid for a certain timeframe.

However, this introduces bad user experience to the mobile application. This is

because the user would need to enter login credentials every time the token is expired.

This could be improved by adding the notion of refresh token and access token. A

refresh token is a token that never expires whereas the access token is short-lived. The

access token is used by the clients to authenticate themselves whereas the refresh token

is used to request new access tokens when the old access token is expired.

One would ask, what happens when the refresh token itself is compromised. The

attacker would then be able to request for authorization token and this destroys the

purpose of having refreshing tokens. This is not the case, the server would be able

to detect if the refresh token is compromised. This can be done because the attacker

and the user would invalidate each other when they are trying to request a new access

token, which can be detected by the server.

Code Obfuscation

Code obfuscation should be applied to the source code on production. Code obfus-

cation is the process of making source code unreadable, while maintaining the same

functionality. This is important because source code can be reverse engineered easily

with the help of decompilers available online. In particular, the source code of android

application can be decompiled and recovered fairly easily (Eddy, 2014).

There are various tools to obfuscate source code such as Xamarin Dotfuscator (Pre-

Emptive, 2014). It is a NET. obfuscator that obfuscates the code and is developed us-

ing the Xamarin cross-platform framework. This would make the application harder

to reverse engineer by the attacker. In general, code obfuscation should be used in

production. However, code obfuscator does not prevent the application to be reverse

engineered, thus it is still important to have other security measures implemented in

Chapter 5. Discussion 34

the production.

Encryption of Sensitive Data

Important or sensitive data should be encrypted before transmission. This is because

the attacker would be able to sniff and log sensitive information, i.e., we demonstrated

that by using MITM Proxy, we can log account, password or NHS number. The sen-

sitive data should be encrypted with an extra layer of encryption to ensure that data

cannot be easily retrieved easily by an attacker.

BLE Security Authentication

BLE’s security feature should be used for pairing. This should be implemented because

un-authorised pairings could result in different attacks. In this paper, we demonstrated

that another user with a BLE device could pair with the blood pressure monitor without

any authorization. As a result, this causes the device to be denied service.

Other than that, BLE security pairing also provides end-to-end encryption. This

would prevent sensitive information to be sniffed by an eavesdropper.

5.2 Future Work

Future work in this paper concerns a more thorough security analysis on different at-

tack vectors. This would include applying different common exploits on targeted IoT

devices.

The top security vulnerabilities for IoT in OWASP consists of hardware vulnerabili-

ties (Fredric Paul, 2019). This includes hardware tear-down of blood pressure monitors

to be able to extract information from left out debugging interfaces. Thus, we left this

hardware security analysis as a potential future work.

Besides, the secured update mechanism is often not implemented in both the firmware

of the devices and the application. This could lead to other exploits, such as injecting

malware into the firmware to apply a DDoS attack. This investigation could be done

on the targeted device as future work

Other than that, a comparative security study could be done on blood pressure

monitoring devices from different vendors. Hence we can have a broader and more

general security analysis on these devices. Other than that, we can show that what are

the common security vulnerabilities that exist in the device.

Chapter 5. Discussion 35

Finally, with all these security vulnerabilities in mind; research on ways to de-

tect and mitigate vulnerabilities on IoT devices should be done as future work. Oza

et al. (2019) shows a framework of preventing MITM attacks by luring attackers us-

ing decoys. Other than that, Duan et al. (2019) proposed a security framework for

published/subscribe based IoT communication.

Chapter 6

Conclusions

Security analyses that we conducted in this work show that IoT devices, more specif-

ically, health monitoring devices, contain serious security flaws. We applied multiple

security analyses on the Activ8rLives Blood Pressure Monitor that span through mul-

tiple attack vectors.

This includes communication hijacking using MITM proxy, compromising authen-

tication token to do client replay attacks, application decompiling with decompiling

tools, reverse engineer the BLE protocol and BLE device spoofing.

These are all general and common vulnerabilities and well known in the industry.

However, these vulnerabilities are not prevented and considered to be important in

production by product designers. This results in security exploits that are expensive to

patch by manufacturers. Moreover, these security patches and updates are not enforced

by the manufacturers. Other than that, the user does not upgrade their firmware as

much as they should. These lead to IoT devices to contain vulnerability indefinitely.

36

Bibliography

A tool for reverse engineering 3rd party, closed, binary android apps.

https://ibotpeaches.github.io/Apktool/, 2017.

Accenture. Accenture. digital trust in the iot era, 2015. URL https:

//www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/

Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/

Accenture-Digital-Trust.pdf.

Classen, Jiska, Wegemer, Daniel, Patras, Paul, Spink, Tom, and Hollick, Matthias.

Anatomy of a vulnerable fitness tracking system: Dissecting the fitbit cloud, app,

and firmware. Proceedings of the ACM Interactactive and Mobile Wearable Ubiq-

uitous Technology, 2(1):5:1–5:24, March 2018.

Cyr, Bruce D., Horn, Webb, Miao, Daniela, and Specter, Michael A. Security analysis

of wearable fitness devices (fitbit). 2014.

Davidson, Robert. Getting started with bluetooth low energy. 2014.

Devopedia. Xamarin, version 11, 2018. URL https://devopedia.org/xamarin.

dgrunwald. Ilspy, open-source .net assembly browser and decompiler, 2019. URL

https://github.com/icsharpcode/ILSpy.

DigitalHealth. Special report: Remote monitoring and self-

care, 2018. URL https://www.digitalhealth.net/2018/04/

special-report-remote-monitoring-and-self-care/.

Duan, L., Sun, C., Zhang, Y., Ni, W., and Chen, J. A comprehensive security frame-

work for publish/subscribe-based iot services communication. IEEE Access, 7:

25989–26001, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2899076.

37

https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://www.accenture.com/t20150714T123236__w__/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_18/Accenture-Digital-Trust.pdf
https://devopedia.org/xamarin
https://github.com/icsharpcode/ILSpy
https://www.digitalhealth.net/2018/04/special-report-remote-monitoring-and-self-care/
https://www.digitalhealth.net/2018/04/special-report-remote-monitoring-and-self-care/

Bibliography 38

Daz-Snchez, D., Marn-Lopez, A., Almenarez, F., Arias, P., and Sherratt, R. S. Tls/pki

challenges and certificate pinning techniques for iot and m2m secure communica-

tions. IEEE Communications Surveys Tutorials, pp. 1–1, 2019. ISSN 1553-877X.

doi: 10.1109/COMST.2019.2914453.

Eddy, Max. Rsac: Reverse-engineering an android app in five

minutes, 2014. URL https://uk.pcmag.com/opinion/10593/

rsac-reverse-engineering-an-android-app-in-five-minutes.

Fereidooni, H., Classen, J., Spink, T., Patras, P., Miettinen, M., Sadeghi, A.-R., Hol-

lick, M., and Conti, M. Breaking fitness records without moving: Reverse engineer-

ing and spoofing Fitbit. In Proceeding of International Symposium on Research in

Attacks, Intrusions and Defenses (RAID), Atlanta, GA, USA, September 2017.

Fielding, Roy, Gettys, Jim, Mogul, Jeffrey, Frystyk, Henrik, Masinter, Larry, Leach,

Paul, and Berners-Lee, Tim. Hypertext transfer protocol–http/1.1, 1999.

Fredric Paul, Networkworld. Top 10 iot vulnerabilities, 2019. URL https://www.

networkworld.com/article/3332032/top-10-iot-vulnerabilities.html.

Google. Secure your site with https, 2019. URL https://support.google.com/

webmasters/answer/6073543?hl=en.

IoT Agenda. Current and future applications of iot in healthcare, 2018.

URL https://internetofthingsagenda.techtarget.com/feature/

Can-we-expect-the-Internet-of-Things-in-healthcare.

iscoop.eu. Iot security: smart business requires smarter inter-

net of things security, 2018. URL https://www.i-scoop.eu/

iot-security-smarter-internet-of-things-security/.

java decompiler. Java decompiler, yet another fast java decompiler., 2019. URL

https://java-decompiler.github.io.

Jeon, K. E., She, J., Soonsawad, P., and Ng, P. C. Ble beacons for internet of things ap-

plications: Survey, challenges, and opportunities. IEEE Internet of Things Journal,

5(2):811–828, April 2018. ISSN 2327-4662. doi: 10.1109/JIOT.2017.2788449.

Maher, Carol, Ryan, Jillian, Ambrosi, Christina, and Edney, Sarah. Users’ experiences

of wearable activity trackers: a cross-sectional study.(survey). BMC Public Health,

17(1), 2017. ISSN 1471-2458.

https://uk.pcmag.com/opinion/10593/rsac-reverse-engineering-an-android-app-in-five-minutes
https://uk.pcmag.com/opinion/10593/rsac-reverse-engineering-an-android-app-in-five-minutes
https://www.networkworld.com/article/3332032/top-10-iot-vulnerabilities.html
https://www.networkworld.com/article/3332032/top-10-iot-vulnerabilities.html
https://support.google.com/webmasters/answer/6073543?hl=en
https://support.google.com/webmasters/answer/6073543?hl=en
https://internetofthingsagenda.techtarget.com/feature/Can-we-expect-the-Internet-of-Things-in-healthcare
https://internetofthingsagenda.techtarget.com/feature/Can-we-expect-the-Internet-of-Things-in-healthcare
https://www.i-scoop.eu/iot-security-smarter-internet-of-things-security/
https://www.i-scoop.eu/iot-security-smarter-internet-of-things-security/
https://java-decompiler.github.io

Bibliography 39

Matt Toomey, Aberdeen. Iot device security is being seriously ne-

glected, 2018. URL https://www.aberdeen.com/techpro-essentials/

iot-device-security-seriously-neglected/.

Orebaugh, Angela, Ramirez, Gilbert, Beale, Jay, and Wright, Joshua. Wireshark &

Ethereal Network Protocol Analyzer Toolkit. Syngress Publishing, 2007. ISBN

1597490733, 9781597490733.

Orlosky, Jason, Ezenwoye, Onyeka, Yates, Heather, and Besenyi, Gina. A look at the

security and privacy of fitbit as a health activity tracker. In Proceedings of the 2019

ACM Southeast Conference, pp. 241–244. ACM, 2019.

Oza, Antara Durgesh, Kumar, Gardas Naresh, Khorajiya, Moin, and Tiwari, Vineeta.

Snaring cyber attacks on iot devices with honeynet. In Peng, Sheng-Lung, Dey,

Nilanjan, and Bundele, Mahesh (eds.), Computing and Network Sustainability, pp.

1–12, Singapore, 2019. Springer Singapore. ISBN 978-981-13-7150-9.

Park, Junghoon, Son, Byeonggeun, Park, Junyoung, Kim, Myoungsu, and Yim, Kang-

bin. Unintended certificate installation into remote iot nodes. In Barolli, Leonard,

Xhafa, Fatos, and Hussain, Omar K. (eds.), Innovative Mobile and Internet Ser-

vices in Ubiquitous Computing, pp. 845–854, Cham, 2020. Springer International

Publishing. ISBN 978-3-030-22263-5.

Post, Washington. Charlie sheens hiv status and the dawn

of medical-data blackmail, 2015. URL https://www.

washingtonpost.com/news/to-your-health/wp/2015/11/17/

charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/

?noredirect=on.

PreEmptive. Protecting xamarin apps, 2014. URL https://www.preemptive.com/

dotfuscator/pro/userguide/en/getting_started_xamarin.html.

pxb1988, Bob Pan. dex2jar, decompile dalvik executable (.dex/.odex) format., 2018.

URL https://github.com/pxb1988/dex2jar.

ReadWrite. The 5 ways iot is about to change healthcare as we

know it, 2018. URL https://readwrite.com/2018/05/22/

the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/.

https://www.aberdeen.com/techpro-essentials/iot-device-security-seriously-neglected/
https://www.aberdeen.com/techpro-essentials/iot-device-security-seriously-neglected/
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.washingtonpost.com/news/to-your-health/wp/2015/11/17/charlie-sheens-hiv-status-and-the-dawn-of-medical-data-blackmail/?noredirect=on
https://www.preemptive.com/dotfuscator/pro/userguide/en/getting_started_xamarin.html
https://www.preemptive.com/dotfuscator/pro/userguide/en/getting_started_xamarin.html
https://github.com/pxb1988/dex2jar
https://readwrite.com/2018/05/22/the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/
https://readwrite.com/2018/05/22/the-5-ways-iot-is-about-to-change-healthcare-as-we-know-it/

Bibliography 40

Scotland, Gov. Heart disease in scotland, 2019. URL https://www2.gov.scot/

Topics/Health/Services/Long-Term-Conditions/Heart-Disease.

Scott Amyx, TechBeacon. 67 open source tools and resources for

iot, 2018. URL https://techbeacon.com/app-dev-testing/

67-open-source-tools-resources-iot.

Semiconductor., Nordic. nrf connect sdk, the bluetooth software development kit,

2019. URL https://www.nordicsemi.com/Software-and-Tools/Software.

Service, Indo Asian News. Cyberattacks grew 22% on india’s iot deployments

in q2, 2019. URL https://www.livemint.com/technology/tech-news/

cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.

html.

SIG., Bluetooth. Bluetooth core specification v5.0, 2019. URL https://www.

bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043.

Symantec. Mirai: what you need to know about the botnet behind recent ma-

jor ddos attacks, 2016. URL https://www.symantec.com/connect/blogs/

mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks.

TheGuardian. Hackable implanted medical devices could cause deaths,

2019. URL https://www.theguardian.com/technology/2018/aug/09/

implanted-medical-devices-hacking-risks-medtronic.

Tuptuk, Nilufer and Hailes, Stephen. Security of smart manufacturing systems.

Journal of Manufacturing Systems, 47:93 – 106, 2018. ISSN 0278-6125. doi:

https://doi.org/10.1016/j.jmsy.2018.04.007. URL http://www.sciencedirect.

com/science/article/pii/S0278612518300463.

WPP. World population prospects, key findings and advance table, 2017. URL https:

//esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf.

Yaqoob, T., Abbas, H., and Atiquzzaman, M. Security vulnerabilities, attacks, counter-

measures, and regulations of networked medical devices a review. IEEE Communi-

cations Surveys Tutorials, pp. 1–1, 2019. ISSN 1553-877X. doi: 10.1109/COMST.

2019.2914094.

https://www2.gov.scot/Topics/Health/Services/Long-Term-Conditions/Heart-Disease
https://www2.gov.scot/Topics/Health/Services/Long-Term-Conditions/Heart-Disease
https://techbeacon.com/app-dev-testing/67-open-source-tools-resources-iot
https://techbeacon.com/app-dev-testing/67-open-source-tools-resources-iot
https://www.nordicsemi.com/Software-and-Tools/Software
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.livemint.com/technology/tech-news/cyberattacks-grew-22-on-india-s-iot-deployments-in-q2-1565356789868.html
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.theguardian.com/technology/2018/aug/09/implanted-medical-devices-hacking-risks-medtronic
https://www.theguardian.com/technology/2018/aug/09/implanted-medical-devices-hacking-risks-medtronic
http://www.sciencedirect.com/science/article/pii/S0278612518300463
http://www.sciencedirect.com/science/article/pii/S0278612518300463
https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf

	Introduction
	Background
	Related Work
	Bluetooth Low Energy
	Hypertext Transfer Protocol / Secure
	Information Assurance

	Methodology
	Activ8rlives Blood Pressure Monitor
	Communications Model

	Adversarial Model
	Attacker Capabilities
	Threat Scenarios

	Testbed
	Setup Environment
	MITM Setup

	BLE Debugging Tools
	Application Decompiling

	Security Analysis
	Transparent Proxying
	Packet Injection
	Activ8Live Application BLE Protocol
	HCI Logs
	Application Decompiling
	BLE Protocol

	Custom BLE Device
	Denial of Service

	Discussion
	Attack Mitigation
	Future Work

	Conclusions
	Bibliography

